2,712 research outputs found

    High order finite element calculations for the deterministic Cahn-Hilliard equation

    Full text link
    In this work, we propose a numerical method based on high degree continuous nodal elements for the Cahn-Hilliard evolution. The use of the p-version of the finite element method proves to be very efficient and favorably compares with other existing strategies (C^1 elements, adaptive mesh refinement, multigrid resolution, etc). Beyond the classical benchmarks, a numerical study has been carried out to investigate the influence of a polynomial approximation of the logarithmic free energy and the bifurcations near the first eigenvalue of the Laplace operator

    Linear orbits of arbitrary plane curves

    Full text link
    The `linear orbit' of a plane curve of degree dd is its orbit in d(d+3)/2\P^{d(d+3)/2} under the natural action of \PGL(3). In this paper we obtain an algorithm computing the degree of the closure of the linear orbit of an arbitrary plane curve, and give explicit formulas for plane curves with irreducible singularities. The main tool is an intersection@-theoretic study of the projective normal cone of a scheme determined by the curve in the projective space 8\P^8 of 3×33\times 3 matrices; this expresses the degree of the orbit closure in terms of the degrees of suitable loci related to the limits of the curve. These limits, and the degrees of the corresponding loci, have been established in previous work.Comment: 33 pages, AmS-TeX 2.

    Stationary problems for equation of the KdV type and dynamical rr-matrices.

    Get PDF
    We study a quite general family of dynamical rr-matrices for an auxiliary loop algebra L(su(2)){\cal L}({su(2)}) related to restricted flows for equations of the KdV type. This underlying rr-matrix structure allows to reconstruct Lax representations and to find variables of separation for a wide set of the integrable natural Hamiltonian systems. As an example, we discuss the Henon-Heiles system and a quartic system of two degrees of freedom in detail.Comment: 25pp, LaTe
    corecore