874 research outputs found

    Fast matrix computations for functional additive models

    Full text link
    It is common in functional data analysis to look at a set of related functions: a set of learning curves, a set of brain signals, a set of spatial maps, etc. One way to express relatedness is through an additive model, whereby each individual function gi(x)g_{i}\left(x\right) is assumed to be a variation around some shared mean f(x)f(x). Gaussian processes provide an elegant way of constructing such additive models, but suffer from computational difficulties arising from the matrix operations that need to be performed. Recently Heersink & Furrer have shown that functional additive model give rise to covariance matrices that have a specific form they called quasi-Kronecker (QK), whose inverses are relatively tractable. We show that under additional assumptions the two-level additive model leads to a class of matrices we call restricted quasi-Kronecker, which enjoy many interesting properties. In particular, we formulate matrix factorisations whose complexity scales only linearly in the number of functions in latent field, an enormous improvement over the cubic scaling of na\"ive approaches. We describe how to leverage the properties of rQK matrices for inference in Latent Gaussian Models

    The Theory and Practice of Estimating the Accuracy of Dynamic Flight-Determined Coefficients

    Get PDF
    Means of assessing the accuracy of maximum likelihood parameter estimates obtained from dynamic flight data are discussed. The most commonly used analytical predictors of accuracy are derived and compared from both statistical and simplified geometrics standpoints. The accuracy predictions are evaluated with real and simulated data, with an emphasis on practical considerations, such as modeling error. Improved computations of the Cramer-Rao bound to correct large discrepancies due to colored noise and modeling error are presented. The corrected Cramer-Rao bound is shown to be the best available analytical predictor of accuracy, and several practical examples of the use of the Cramer-Rao bound are given. Engineering judgement, aided by such analytical tools, is the final arbiter of accuracy estimation

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Estimating conditional volatility with neural networks

    Get PDF
    It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique

    Maximum likelihood estimation of time series models: the Kalman filter and beyond

    Get PDF
    The purpose of this chapter is to provide a comprehensive treatment of likelihood inference for state space models. These are a class of time series models relating an observable time series to quantities called states, which are characterized by a simple temporal dependence structure, typically a first order Markov process. The states have sometimes substantial interpretation. Key estimation problems in economics concern latent variables, such as the output gap, potential output, the non-accelerating-inflation rate of unemployment, or NAIRU, core inflation, and so forth. Time-varying volatility, which is quintessential to finance, is an important feature also in macroeconomics. In the multivariate framework relevant features can be common to different series, meaning that the driving forces of a particular feature and/or the transmission mechanism are the same. The objective of this chapter is reviewing this algorithm and discussing maximum likelihood inference, starting from the linear Gaussian case and discussing the extensions to a nonlinear and non Gaussian framework

    Maximum likelihood estimation of time series models: the Kalman filter and beyond

    Get PDF
    The purpose of this chapter is to provide a comprehensive treatment of likelihood inference for state space models. These are a class of time series models relating an observable time series to quantities called states, which are characterized by a simple temporal dependence structure, typically a first order Markov process. The states have sometimes substantial interpretation. Key estimation problems in economics concern latent variables, such as the output gap, potential output, the non-accelerating-inflation rate of unemployment, or NAIRU, core inflation, and so forth. Time-varying volatility, which is quintessential to finance, is an important feature also in macroeconomics. In the multivariate framework relevant features can be common to different series, meaning that the driving forces of a particular feature and/or the transmission mechanism are the same. The objective of this chapter is reviewing this algorithm and discussing maximum likelihood inference, starting from the linear Gaussian case and discussing the extensions to a nonlinear and non Gaussian framework

    A Review of the Frequency Estimation and Tracking Problems

    Get PDF
    This report presents a concise review of some frequency estimation and frequency tracking problems. In particular, the report focusses on aspects of these problems which have been addressed by members of the Frequency Tracking and Estimation project of the Centre for Robust and Adaptive Systems. The report is divided into four parts: problem specification and discussion, associated problems, frequency estimation algorithms and frequency tracking algorithms. Part I begins with a definition of the various frequency estimation and tracking problems. Practical examples of where each problem may arise are given. A comparison is made between the frequency estimation and tracking problems. In Part II, block frequency estimation algorithms, fast block frequency estimation algorithms and notch filtering techniques for frequency estimation are dealt with. Frequency tracking algorithms are examined in Part III. Part IV of this report examines various problems associated with frequency estimation. Associated problems include Cramer-Rao lower bounds, theoretical algorithm performance, frequency resolution, use of the analytic signal and model order selection
    corecore