930 research outputs found

    Solution of Dual Fuzzy Equations Using a New Iterative Method

    Get PDF
    In this paper, a new hybrid scheme based on learning algorithm of fuzzy neural network (FNN) is offered in order to extract the approximate solution of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper is a five-layer feed-back FNN with the identity activation function. The input-output relation of each unit is defined by the extension principle of Zadeh. The output from this neural network, which is also a fuzzy number, is numerically compared with the target output. The comparison of the feed-back FNN method with the feed-forward FNN method shows that the less error is observed in the feed-back FNN method. An example based on applications are given to illustrate the concepts, which are discussed in this paper

    Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations

    Get PDF
    Integral equation has been one of the essential tools for various area of applied mathematics. In this work, we employed different numerical methods for solving both linear and nonlinear Fredholm integral equations. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations. Integral equations can be viewed as equations which are results of transformation of points in a given vector spaces of integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is concerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral equations can be developed. This work, specially, deals with the development of different wavelet methods for solving integral and intgro-differential equations. Wavelets theory is a relatively new and emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time frequency analysis, and fast algorithms for easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms. Wavelets can be separated into two distinct types, orthogonal and semi-orthogonal. The preliminary concept of integral equations and wavelets are first presented in Chapter 1. Classification of integral equations, construction of wavelets and multi-resolution analysis (MRA) have been briefly discussed and provided in this chapter. In Chapter 2, different wavelet methods are constructed and function approximation by these methods with convergence analysis have been presented. In Chapter 3, linear semi-orthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations (both linear and nonlinear) of the second kind and their systems. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. Convergence analysis of B-spline method has been discussed in this chapter. Again, in Chapter 4, system of nonlinear Fredholm integral equations have been solved by using hybrid Legendre Block-Pulse functions and xiii Bernstein collocation method. In Chapter 5, two practical problems arising from chemical phenomenon, have been modeled as Fredholm- Hammerstein integral equations and solved numerically by different numerical techniques. First, COSMO-RS model has been solved by Bernstein collocation method, Haar wavelet method and Sinc collocation method. Second, Hammerstein integral equation arising from chemical reactor theory has been solved by B-spline wavelet method. Comparison of results have been demonstrated through illustrative examples. In Chapter 6, Legendre wavelet method and Bernoulli wavelet method have been developed to solve system of integro-differential equations. Legendre wavelets along with their operational matrices are developed to approximate the solutions of system of nonlinear Volterra integro-differential equations. Also, nonlinear Volterra weakly singular integro-differential equations system has been solved by Bernoulli wavelet method. The properties of these wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved numerically by Newton's method. Rigorous convergence analysis has been done for these wavelet methods. Illustrative examples have been included to demonstrate the validity and applicability of the proposed techniques. In Chapter 7, we have solved the second order Lane-Emden type singular differential equation. First, the second order differential equation is transformed into integro-differential equation and then solved by Legendre multi-wavelet method and Chebyshev wavelet method. Convergence of these wavelet methods have been discussed in this chapter. In Chapter 8, we have developed a efficient collocation technique called Legendre spectral collocation method to solve the Fredholm integro-differential-difference equations with variable coefficients and system of two nonlinear integro-differential equations which arise in biological model. The proposed method is based on the Gauss-Legendre points with the basis functions of Lagrange polynomials. The present method reduces this model to a system of nonlinear algebraic equations and again this algebraic system has been solved numerically by Newton's method. The study of fuzzy integral equations and fuzzy differential equations is an emerging area of research for many authors. In Chapter 9, we have proposed some numerical techniques for solving fuzzy integral equations and fuzzy integro-differential equations. Fundamentals of fuzzy calculus have been discussed in this chapter. Nonlinear fuzzy Hammerstein integral equation has been solved by Bernstein polynomials and Legendre wavelets, and then compared with homotopy analysis method. We have solved nonlinear fuzzy Hammerstein Volterra integral equations with constant delay by Bernoulli wavelet method and then compared with B-spline wavelet method. Finally, fuzzy integro-differential equation has been solved by Legendre wavelet method and compared with homotopy analysis method. In fuzzy case, we have applied two-dimensional numerical methods which are discussed in chapter 2. Convergence analysis and error estimate have been also provided for Bernoulli wavelet method. xiv The study of fractional calculus, fractional differential equations and fractional integral equations has a great importance in the field of science and engineering. Most of the physical phenomenon can be best modeled by using fractional calculus. Applications of fractional differential equations and fractional integral equations create a wide area of research for many researchers. This motivates to work on fractional integral equations, which results in the form of Chapter 10. First, the preliminary definitions and theorems of fractional calculus have been presented in this chapter. The nonlinear fractional mixed Volterra-Fredholm integro-differential equations along with mixed boundary conditions have been solved by Legendre wavelet method. A numerical scheme has been developed by using Petrov-Galerkin method where the trial and test functions are Legendre wavelets basis functions. Also, this method has been applied to solve fractional Volterra integro-differential equations. Uniqueness and existence of the problem have been discussed and the error estimate of the proposed method has been presented in this work. Sinc Galerkin method is developed to approximate the solution of fractional Volterra-Fredholm integro-differential equations with weakly singular kernels. The proposed method is based on the Sinc function approximation. Uniqueness and existence of the problem have been discussed and the error analysis of the proposed method have been presented in this chapte

    Fuzzy Modeling for Uncertain Nonlinear Systems Using Fuzzy Equations and Z-Numbers

    Get PDF
    In this paper, the uncertainty property is represented by Z-number as the coefficients and variables of the fuzzy equation. This modification for the fuzzy equation is suitable for nonlinear system modeling with uncertain parameters. Here, we use fuzzy equations as the models for the uncertain nonlinear systems. The modeling of the uncertain nonlinear systems is to find the coefficients of the fuzzy equation. However, it is very difficult to obtain Z-number coefficients of the fuzzy equations. Taking into consideration the modeling case at par with uncertain nonlinear systems, the implementation of neural network technique is contributed in the complex way of dealing the appropriate coefficients of the fuzzy equations. We use the neural network method to approximate Z-number coefficients of the fuzzy equations

    Fuzzy set methods for object recognition in space applications

    Get PDF
    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed

    Numerical Solution of Fuzzy Equations with Z-numbers using Neural Networks

    Get PDF
    In this paper, the uncertainty property is represented by the Z-number as the coefficients of the fuzzy equation. This modification for the fuzzy equation is suitable for nonlinear system modeling with uncertain parameters. We also extend the fuzzy equation into dual type, which is natural for linear-in-parameter nonlinear systems. The solutions of these fuzzy equations are the controllers when the desired references are regarded as the outputs. The existence conditions of the solutions (controllability) are proposed. Two types of neural networks are implemented to approximate solutions of the fuzzy equations with Z-number coefficients

    ON QUASI NEWTON METHOD FOR SOLVING FUZZY NONLINEAR EQUATIONS

    Get PDF
    This paper presents Quasi Newton’s (QN) approach for solving fuzzy nonlinear equations. The method considers an approximation of the Jacobian matrix which is updated as the iteration progresses. Numerical illustrations are carried, and the results shows that the proposed method is very encouraging

    Uncalibrated Dynamic Mechanical System Controller

    Get PDF
    An apparatus and method for enabling an uncalibrated, model independent controller for a mechanical system using a dynamic quasi-Newton algorithm which incorporates velocity components of any moving system parameter(s) is provided. In the preferred embodiment, tracking of a moving target by a robot having multiple degrees of freedom is achieved using an uncalibrated model independent visual servo control. Model independent visual servo control is defined as using visual feedback to control a robot's servomotors without a precisely calibrated kinematic robot model or camera model. A processor updates a Jacobian and a controller provides control signals such that the robot's end effector is directed to a desired location relative to a target on a workpiece.Georgia Tech Research Corporatio

    Nonlinear System Identification of Laboratory Heat Exchanger Using Artificial Neural Network Model

    Get PDF
    This paper addresses the nonlinear identification of liquid saturated steam heat exchanger (LSSHE) using artificial neural network model. Heat exchanger is a highly nonlinear and non-minimum phase process and often its working conditions are variable. Experimental data obtained from fluid outlet temperature measurement in laboratory environment is used as the output variable and the rate of change of fluid flow into the system as input too. The results of identification using neural network and conventional nonlinear models are compared together. The simulation results show that neural network model is more accurate and faster in comparison with conventional nonlinear models for a time series data because of the independence of the model assignment.DOI:http://dx.doi.org/10.11591/ijece.v3i1.195

    Gravitational-Search Algorithm for Optimal Controllers Design of Doubly-fed Induction Generator

    Get PDF
    Recently, the Gravitational-Search Algorithm (GSA) has been presented as a promising physics-inspired stochastic global optimization technique. It takes its derivation and features from laws of gravitation. This paper applies the GSA to design optimal controllers of a nonlinear system consisting of a doubly-fed induction generator (DFIG) driven by a wind turbine. Both the active and the reactive power are controlled and processed through a back-to-back converter. The active power control loop consists of two cascaded proportional integral (PI) controllers. Another PI controller is used to set the q-component of the rotor voltage by compensating the generated reactive power. The GSA is used to simultaneously tune the parameters of the three PI controllers. A time-weighted absolute error (ITAE) is used in the objective function to stabilize the system and increase its damping when subjected to different disturbances. Simulation results will demonstrate that the optimal GSA-based coordinated controllers can efficiently damp system oscillations under severe disturbances. Moreover, simulation results will show that the designed optimal controllers obtained using the GSA perform better than the optimal controllers obtained using two commonly used global optimization techniques, which are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)
    corecore