1,128 research outputs found

    Regularisation methods for imaging from electrical measurements

    Get PDF
    In Electrical Impedance Tomography the conductivity of an object is estimated from boundary measurements. An array of electrodes is attached to the surface of the object and current stimuli are applied via these electrodes. The resulting voltages are measured. The process of estimating the conductivity as a function of space inside the object from voltage measurements at the surface is called reconstruction. Mathematically the ElT reconstruction is a non linear inverse problem, the stable solution of which requires regularisation methods. Most common regularisation methods impose that the reconstructed image should be smooth. Such methods confer stability to the reconstruction process, but limit the capability of describing sharp variations in the sought parameter. In this thesis two new methods of regularisation are proposed. The first method, Gallssian anisotropic regularisation, enhances the reconstruction of sharp conductivity changes occurring at the interface between a contrasting object and the background. As such changes are step changes, reconstruction with traditional smoothing regularisation techniques is unsatisfactory. The Gaussian anisotropic filtering works by incorporating prior structural information. The approximate knowledge of the shapes of contrasts allows us to relax the smoothness in the direction normal to the expected boundary. The construction of Gaussian regularisation filters that express such directional properties on the basis of the structural information is discussed, and the results of numerical experiments are analysed. The method gives good results when the actual conductivity distribution is in accordance with the prior information. When the conductivity distribution violates the prior information the method is still capable of properly locating the regions of contrast. The second part of the thesis is concerned with regularisation via the total variation functional. This functional allows the reconstruction of discontinuous parameters. The properties of the functional are briefly introduced, and an application in inverse problems in image denoising is shown. As the functional is non-differentiable, numerical difficulties are encountered in its use. The aim is therefore to propose an efficient numerical implementation for application in ElT. Several well known optimisation methods arc analysed, as possible candidates, by theoretical considerations and by numerical experiments. Such methods are shown to be inefficient. The application of recent optimisation methods called primal- dual interior point methods is analysed be theoretical considerations and by numerical experiments, and an efficient and stable algorithm is developed. Numerical experiments demonstrate the capability of the algorithm in reconstructing sharp conductivity profiles

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Variable Selection with False Discovery Control

    Get PDF
    Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genome-wide association studies (GWAS). Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. In the context of survival analysis with high-dimensional covariates, this paper develops a computationally feasible method for building general risk prediction models, while controlling false discoveries. We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2,339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients

    A Review on Different Image De-noising Methods

    Get PDF
    Image de-noising is a classical yet fundamental problem in low level vision, as well as an ideal test bed to evaluate various statistical image modeling methods. The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when us ed with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. One of the most challenging problems in image de - noising is how to preserve the fine scale texture structures while removing noise. Various natural image priors, such as gradient based prior, nonlocal self - similarity prior, and sparsity prior, have been extensively exploited for noise removal. The de - noising algorithms based on these priors, however, tend to smoo th the detailed image textures, degrading the image visual quality. To address this problem, we propose a texture enhanced image de - noising (TEID) method by enforcing the gradient distribution of the de - noised image to be close to the estimated gradient d istribution of the original image. Another method is an alternative de - convolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that are constructed image should have a gradient distribution simil ar to a reference distribution

    Simulating Galaxy Formation

    Get PDF
    A review on numerical simulations of galaxy formation is given. Different numerical methods to solve collisionless and gas dynamical systems are outlined and one particular simulation technique, Smoothed Particle Hydrodynamics, is discussed in some detail. After a short discussion of the most relevant physical processes which affect the dynamics of the gas, the success and shortcomings of state of the art simulations are discussed via the example of the formation of disk galaxies.Comment: 24 pages, uuencoded postscript file, 5 figures, 2 figures included Proc. ``International School of Physics Enrico Fermi'', Course CXXXII: Dark Matter in the Universe, Varenna 1995, eds.: S. Bonometto, J. Primack, A. Provenzale, IOP, to appear; complete version available at http://www.mpa-garching.mpg.de/Galaxien/prep.htm

    Efficient upwind algorithms for solution of the Euler and Navier-stokes equations

    Get PDF
    An efficient three-dimensionasl tructured solver for the Euler and Navier-Stokese quations is developed based on a finite volume upwind algorithm using Roe fluxes. Multigrid and optimal smoothing multi-stage time stepping accelerate convergence. The accuracy of the new solver is demonstrated for inviscid flows in the range 0.675 :5M :5 25. A comparative grid convergence study for transonic turbulent flow about a wing is conducted with the present solver and a scalar dissipation central difference industrial design solver. The upwind solver demonstrates faster grid convergence than the central scheme, producing more consistent estimates of lift, drag and boundary layer parameters. In transonic viscous computations, the upwind scheme with convergence acceleration is over 20 times more efficient than without it. The ability of the upwind solver to compute viscous flows of comparable accuracy to scalar dissipation central schemes on grids of one-quarter the density make it a more accurate, cost effective alternative. In addition, an original convergencea cceleration method termed shock acceleration is proposed. The method is designed to reduce the errors caused by the shock wave singularity M -+ 1, based on a localized treatment of discontinuities. Acceleration models are formulated for an inhomogeneous PDE in one variable. Results for the Roe and Engquist-Osher schemes demonstrate an order of magnitude improvement in the rate of convergence. One of the acceleration models is extended to the quasi one-dimensiona Euler equations for duct flow. Results for this case d monstrate a marked increase in convergence with negligible loss in accuracy when the acceleration procedure is applied after the shock has settled in its final cell. Typically, the method saves up to 60% in computational expense. Significantly, the performance gain is entirely at the expense of the error modes associated with discrete shock structure. In view of the success achieved, further development of the method is proposed

    Meta-Learning Evolutionary Artificial Neural Networks

    Full text link
    In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the comparative performance, we used three different well-known chaotic time series. We also present the state of the art popular neural network learning algorithms and some experimentation results related to convergence speed and generalization performance. We explored the performance of backpropagation algorithm; conjugate gradient algorithm, quasi-Newton algorithm and Levenberg-Marquardt algorithm for the three chaotic time series. Performances of the different learning algorithms were evaluated when the activation functions and architecture were changed. We further present the theoretical background, algorithm, design strategy and further demonstrate how effective and inevitable is the proposed MLEANN framework to design a neural network, which is smaller, faster and with a better generalization performance

    Acta Cybernetica : Volume 20. Number 1.

    Get PDF
    corecore