81 research outputs found

    Analysis of a two-echelon inventory system with two supply modes

    Get PDF
    In this paper, we consider a serial two-echelon periodic review inventory system with two supply modes at the most upstream stock point. As control policy for this system, we propose a natural extension of the dual-index policy, which has three base-stock levels. We consider the minimization of long run average inventory holding, backlogging, and both per unit and fixed emergency ordering costs. We provide nested newsboy characterizations for two of the three base-stock levels involved and show a separability result for the difference with the remaining base-stock level. We use results for the single-echelon system to efficiently approximate the distributions of random variables involved in the newsboy equations and find an asymptotically correct approximation for both the per unit and fixed emergency ordering costs. Based on these results, we provide an algorithm for setting base-stock levels in a computationally efficient manner. In a numerical study, we investigate the value of dual-sourcing in supply chains and show that it is useful to decrease upstream stock levels. In cases with high demand uncertainty, high backlogging cost or long lead times, we conclude that dual-sourcing can lead to significant savings

    Newsvendor characterizations for one-warehouse multi-retailer inventory systems with descrete demand under the balance assumption

    Get PDF
    This paper considers a one-warehouse multi-retailer inventory system that faces discrete stochastic demand of the customers. Under the so-called balance assumption (also known as the allocation assumption), base stock policies are optimal. Our main contribution is to show that the optimal base stock levels satisfy newsvendor characterizations, which are in terms of inequalities, and to extend the newsvendor equalities known for the continuous demand model. These characterizations are appealing because they (i) are easy to explain to nonmathematical oriented people like managers and MBA students, (ii) contribute to the understanding of optimal control, (iii) help intuition development by providing direct relation between cost and optimal policy parameters

    An Advanced Heuristic for Multiple-Option Spare Parts Procurement after End-of-Production

    Get PDF
    After-sales service is a major profit generator for more and more OEMs in industries with durable products. Successful engagement in after-sales service improves customer loyalty and allows for competitive differentiation through superior service like an extended service period after end of production during which customers are guaranteed to be provided with service parts. In order to fulfill the service guarantee in these cases, an effective and efficient spare parts management has to be implemented, which is challenging due to the high uncertainty concerning spare parts demand over such a long time horizon. The traditional way of spare parts acquisition for the service phase is to set up a huge final lot at the end of regular production of the parent product which is sufficient to fulfill demand up to the end of the service time. This strategy results in extremely high inventory levels over a long period and generates major holding costs and a high level of obsolescence risk. With increasing service time more flexible options for spare parts procurement after end of production gain more and more importance. In our paper we focus on the two most relevant ones, namely extra production and remanufacturing. Managing all three options leads to a complicated stochastic dynamic decision problem. For that problem type, however, a quite simple combined decision rule with order-up-to levels for extra production and remanufacturing turns out to be very effective. We propose a heuristic procedure for parameter determination which accounts for the main stochastic and dynamic interactions between the different order-up-to levels, but still consists of quite simple calculations so that it can be applied to problem instances of arbitrary size. In a numerical study we show that this heuristic performs extremely well under a wide range of conditions so that it can be strongly recommended as a decision support tool for the multi-option spare parts procurement problem.Spare Parts, Inventory Management, Reverse Logistics, Final Order
    • …
    corecore