52 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Design of Farthest-Point Masks for Image Halftoning

    Get PDF
    In an earlier paper, we briefly presented a new halftoning algorithm called farthest-point halftoning. In the present paper, this method is analyzed in detail, and a novel dispersion measure is defined to improve the simplicity and flexibility of the result. This new stochastic screen algorithm is loosely based on Kang's dispersed-dot ordered dither halftone array construction technique used as part of his microcluster halftoning method. Our new halftoning algorithm uses pixelwise measures of dispersion based on one proposed by Kang which is here modified to be more effective. In addition, our method exploits the concept of farthest-point sampling (FPS), introduced as a progressive irregular sampling method by Eldar et al. but uses a more efficient implementation of FPS in the construction of the dot profiles. The technique we propose is compared to other state-of-the-art dither-based halftoning methods in both qualitative and quantitative manners

    Digital Image Segmentation and On–line Print Quality Diagnostics

    Get PDF
    During the electrophotographic (EP) process for a modern laser printer, object-oriented halftoning is sometimes used which renders an input raster page with different halftone screen frequencies according to an object map; this approach can reduce the print artifacts for the smooth areas as well as preserve the fine details of a page. Object map can be directly extracted from the page description language (PDL), but most of the time, it is not correctly generated. For the first part of this thesis, we introduce a new object generation algorithm that generates an object map from scratch purely based on a raster image. The algorithm is intended for ASIC application. To achieve hardware friendliness and memory efficiency, the algorithm only buffers two strips of an image at a time for processing. A novel two-pass connected component algorithm is designed that runs through all the pixels in raster order, collect features and classify components on the fly, and recycle unused components to save memories for future strips. The algorithm is finally implemented as a C program. For 10 test pages, with the similar quality of object maps generated, the number of connected components used can be reduced by over 97% on average compared to the classic two-pass connected component which buffers a whole page of pixels. The novelty of the connected component algorithm used here for document segmentation can also be potentially used for wide variety of other applications. The second part of the thesis proposes a new way to diagnose print quality. Compared to the traditional diagnostics of print quality which prints a specially designed test page to be examined by an expert or against a user manual, our proposed system could automatically diagnose a customer’s printer without any human interference. The system relies on scanning printouts from user’s printer. Print defects such as banding, streaking, etc. will be reflected on its scanned page and can be captured by comparing to its master image; the master image is the digitally generated original from which the page is printed. Once the print quality drops below a specified acceptance criteria level, the system can notify a user of the presence of print quality issues. Among so many print defects, color fading – caused by the low toner in the cartridge – is the focus of this work. Our image processing pipeline first uses a feature based image registration algorithm to align the scanned page with the master page spatially and then calculates the color difference of different color clusters between the scanned page and the master page. At last, it will predict which cartridge is depleted

    Spectral modeling of a six-color inkjet printer

    Get PDF
    After customizing an Epson Stylus Photo 1200 by adding a continuous-feed ink system and a cyan, magenta, yellow, black, orange and green ink set, a series of research tasks were carried out to build a full spectral model of the printers output. First, various forward printer models were tested using the fifteen two color combinations of the printer. Yule- Nielsen-spectral-Neugebauer (YNSN) was selected as the forward model and its accuracy tested throughout the colorant space. It was found to be highly accurate, performing as well as a more complex local, cellular version. Next, the performance of nonlinear optimization-routine algorithms were evaluated for their ability to efficiently invert the YNSN model. A quasi-Newton based algorithm designed by Davidon, Fletcher and Powell (DFP) was found to give the best performance when combined with starting values produced from the non-negative least squares fit of single-constant Kubelka- Munk. The accuracy of the inverse model was tested and different optimization objective functions were evaluated. A multistage objective function based on minimizing spectral RMS error and then colorimetric error was found to give highly accurate matches with low metameric potential. Finally, the relationship between the number of printing inks and the ability to eliminate metamerism was explored

    Currency security and forensics: a survey

    Get PDF
    By its definition, the word currency refers to an agreed medium for exchange, a nation’s currency is the formal medium enforced by the elected governing entity. Throughout history, issuers have faced one common threat: counterfeiting. Despite technological advancements, overcoming counterfeit production remains a distant future. Scientific determination of authenticity requires a deep understanding of the raw materials and manufacturing processes involved. This survey serves as a synthesis of the current literature to understand the technology and the mechanics involved in currency manufacture and security, whilst identifying gaps in the current literature. Ultimately, a robust currency is desire

    Visual-Based error diffusion for printers

    Get PDF
    An approach for halftoning is presented that incorporates a printer model and also explicitly uses the human visual model. Conventional methods, such as clustered-dot screening or dispersed-dot screening, do not solve the gray-level distortion of printers and just implicitly use the eye as a lowpass filter. Error diffusion accounts for errors when processing subsequent pixels to minimize the overall mean-square errors. Recently developed model-based halftoning technique eliminates the effect of printer luminance distortion, but this method does not consider the filtering action of the eye, that is, some artifacts of standard error diffusion still exist when the printing resolution and view distance change. Another visual error diffusion method incorporates the human visual filter into error diffusion and results in improved noise characteristics and better resolution for structured image regions, but gray levels are still distorted. Experiments prove that human viewers judge the quality of a halftoning image based mainly on the region which exhibits the worst local error, and low-frequency distortions introduced by the halftoning process are responsible for more visually annoying artifacts in the halftone image than high-frequency distortion. Consequently, we adjust the correction factors of the feedback filter by local characteristics and adjust the dot patterns for some gray levels to minimize the visual blurred local error. Based on the human visual model, we obtain the visual-based error diffusion algorithm, and further we will also incorporate the printer model to correct the printing distortion. The artifacts connected with standard error diffusion are expected to be eliminated or decreased and therefore better print quality should be achieved. In addition to qualitative analysis, we also introduce a subjective evaluation of algorithms. The tests show that the algorithms developed here have improved the performance of error diffusion for printers

    Digital imaging technology assessment: Digital document storage project

    Get PDF
    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes
    • …
    corecore