95,673 research outputs found

    Long-baseline optical intensity interferometry: Laboratory demonstration of diffraction-limited imaging

    Full text link
    A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. In a large optics laboratory, artificial stars were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. These measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes.Comment: 13 pages, 9 figures, Astronomy & Astrophysics, in press. arXiv admin note: substantial text overlap with arXiv:1407.599

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Stellar Intensity Interferometry: Prospects for sub-milliarcsecond optical imaging

    Full text link
    Using kilometric arrays of air Cherenkov telescopes, intensity interferometry may increase the spatial resolution in optical astronomy by an order of magnitude, enabling images of rapidly rotating stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes with very fast detectors are becoming available as arrays of air Cherenkov telescopes, distributed over a few square km. Digital signal handling enables very many baselines to be synthesized, while stars are tracked with electronic time delays, thus synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around m(v)=8, reaching resolutions ~30 microarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason image reconstruction requires phase retrieval techniques, feasible if sufficient coverage of the interferometric (u,v)-plane is available. Experiments are in progress; test telescopes have been erected, and trials in connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.Comment: New Astronomy Reviews, in press; 101 pages, 11 figures, 185 reference

    Investigating the impact of image content on the energy efficiency of hardware-accelerated digital spatial filters

    Get PDF
    Battery-operated low-power portable computing devices are becoming an inseparable part of human daily life. One of the major goals is to achieve the longest battery life in such a device. Additionally, the need for performance in processing multimedia content is ever increasing. Processing image and video content consume more power than other applications. A widely used approach to improving energy efficiency is to implement the computationally intensive functions as digital hardware accelerators. Spatial filtering is one of the most commonly used methods of digital image processing. As per the Fourier theory, an image can be considered as a two-dimensional signal that is composed of spatially extended two-dimensional sinusoidal patterns called gratings. Spatial frequency theory states that sinusoidal gratings can be characterised by its spatial frequency, phase, amplitude, and orientation. This article presents results from our investigation into assessing the impact of these characteristics of a digital image on the energy efficiency of hardware-accelerated spatial filters employed to process the same image. Two greyscale images each of size 128 × 128 pixels comprising two-dimensional sinusoidal gratings at maximum spatial frequency of 64 cycles per image orientated at 0° and 90°, respectively, were processed in a hardware implemented Gaussian smoothing filter. The energy efficiency of the filter was compared with the baseline energy efficiency of processing a featureless plain black image. The results show that energy efficiency of the filter drops to 12.5% when the gratings are orientated at 0° whilst rises to 72.38% at 90°

    Electromagnetically induced spatial light modulation

    Full text link
    We theoretically report that, utilizing electromagnetically induced transparency (EIT), the transverse spatial properties of weak probe fields can be fast modulated by using optical patterns (e.g. images) with desired intensity distributions in the coupling fields. Consequently, EIT systems can function as high-speed optically addressed spatial light modulators. To exemplify our proposal, we indicate the generation and manipulation of Laguerre-Gaussian beams based on either phase or amplitude modulation in hot vapor EIT systems.Comment: 8 pages, 3 figure

    Breaking new ground in mapping human settlements from space -The Global Urban Footprint-

    Full text link
    Today 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70 percent will be living in cities. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4 arcsec (∌12m\sim12 m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3m ground resolution collected in 2011-2012. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. Generally, the GUF layer achieves an overall absolute accuracy of about 85\%, with observed minima around 65\% and maxima around 98 \%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8 arcsec (∌84m\sim84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation or vulnerability assessment
    • 

    corecore