71,131 research outputs found

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Silicon Photomultipliers in Particle and Nuclear Physics

    Full text link
    Following first large-scale applications in highly granular calorimeters and in neutrino detectors, Silicon Photomultipliers have seen a wide adoption in accelerator-based particle and nuclear physics experiments. Today, they are used for a wide range of different particle detector types, ranging from calorimeters and trackers to particle identification and veto detectors, large volume detectors for neutrino physics and timing systems. This article reviews the current state and expected evolution of these applications, highlighting strengths and limitation of SiPMs and the corresponding design choices in the respective contexts. General trends and adopted technical solutions in the applications are discussed.Comment: 17 pages, 18 figures, review paper published in Nuclear Instruments and Methods A; v2 correcting a missing figure link in tex

    Armchair nanoribbons of silicon and germanium honeycomb structures

    Get PDF
    We present a first-principles study of bare and hydrogen passivated armchair nanoribbons of the puckered single layer honeycomb structures of silicon and germanium. Our study includes optimization of atomic structure, stability analysis based on the calculation of phonon dispersions, electronic structure and the variation of band gap with the width of the ribbon. The band gaps of silicon and germanium nanoribbons exhibit family behavior similar to those of graphene nanoribbons. The edges of bare nanoribbons are sharply reconstructed, which can be eliminated by the hydrogen termination of dangling bonds at the edges. Periodic modulation of the nanoribbon width results in a superlattice structure which can act as a multiple quantum wells. Specific electronic states are confined in these wells. Confinement trends are qualitatively explained by including the effects of the interface. In order to investigate wide and long superlattice structures we also performed empirical tight binding calculations with parameters determined from \textit{ab initio} calculations.Comment: please find the published version in http://link.aps.org/doi/10.1103/PhysRevB.81.19512

    Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus

    Full text link
    We show that the optical and electronic properties of nanocrystalline silicon can be efficiently tuned using impurity doping. In particular, we give evidence, by means of ab-initio calculations, that by properly controlling the doping with either one or two atomic species, a significant modification of both the absorption and the emission of light can be achieved. We have considered impurities, either boron or phosphorous (doping) or both (codoping), located at different substitutional sites of silicon nanocrystals with size ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped nanocrystals have the lowest impurity formation energies when the two impurities occupy nearest neighbor sites near the surface. In addition, such systems present band-edge states localized on the impurities giving rise to a red-shift of the absorption thresholds with respect to that of undoped nanocrystals. Our detailed theoretical analysis shows that the creation of an electron-hole pair due to light absorption determines a geometry distortion that in turn results in a Stokes shift between adsorption and emission spectra. In order to give a deeper insight in this effect, in one case we have calculated the absorption and emission spectra going beyond the single-particle approach showing the important role played by many-body effects. The entire set of results we have collected in this work give a strong indication that with the doping it is possible to tune the optical properties of silicon nanocrystals.Comment: 14 pages 19 figure

    Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing

    Get PDF
    Amorphous tantala (a-Ta2O5) is an important technological material that has wide ranging applications in electronics, optics and the biomedical industry. It is used as the high refractive index layers in the multi-layer dielectric mirror coatings in the latest generation of gravitational wave interferometers, as well as other precision interferometers. One of the current limitations in sensitivity of gravitational wave detectors is Brownian thermal noise that arises from the tantala mirror coatings. Measurements have shown differences in mechanical loss of the mirror coatings, which is directly related to Brownian thermal noise, in response to thermal annealing. We utilise scanning electron diffraction to perform Fluctuation Electron Microscopy (FEM) on Ion Beam Sputtered (IBS) amorphous tantala coatings, definitively showing an increase in the medium range order (MRO), as determined from the variance between the diffraction patterns in the scan, due to thermal annealing at increasing temperatures. Moreover, we employ Virtual Dark-Field Imaging (VDFi) to spatially resolve the FEM signal, enabling investigation of the persistence of the fragments responsible for the medium range order, as well as the extent of the ordering over nm length scales, and show ordered patches larger than 5 nm in the highest temperature annealed sample. These structural changes directly correlate with the observed changes in mechanical loss.Comment: 22 pages, 5 figure
    • …
    corecore