8,195 research outputs found

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    The Chameleon project in retrospective

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wireless devices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    Lessons Learned from Designing the Montium - a Coarse-Grained Reconfigurable Processing Tile

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wirelessdevices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    Virtual Prototyping for Dynamically Reconfigurable Architectures using Dynamic Generic Mapping

    Get PDF
    This paper presents a virtual prototyping methodology for Dynamically Reconfigurable (DR) FPGAs. The methodology is based around a library of VHDL image processing components and allows the rapid prototyping and algorithmic development of low-level image processing systems. For the effective modelling of dynamically reconfigurable designs a new technique named, Dynamic Generic Mapping is introduced. This method allows efficient representation of dynamic reconfiguration without needing any additional components to model the reconfiguration process. This gives the designer more flexibility in modelling dynamic configurations than other methodologies. Models created using this technique can then be simulated and targeted to a specific technology using the same code. This technique is demonstrated through the realisation of modules for a motion tracking system targeted to a DR environment, RIFLE-62

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications
    corecore