22,360 research outputs found

    Hypercube matrix computation task

    Get PDF
    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18)

    Geometry definition and grid generation for a complete fighter aircraft

    Get PDF
    Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality

    A class of four parametric with- and without memory root finding methods

    Full text link
    [EN] In this paper, we have constructed a derivative¿free weighted eighth¿order iterative method with and without memory for solving nonlinear equations. This method is an optimal method as it satisfies the Kung¿Traub conjecture. We have used four accelerating parameters, a univariate and a multivariate weight function at the second and third step of the method, respectively. This method is converted into with¿memory method by approximating the parameters using Newton's interpolating polynomials of appropriate degree to increase the order of convergence to 15.51560 and the efficiency index is nearly two. Numerical comparison of our methods is done with the recent methods of respective domain.This research was partially supported by Ministerio de Economía y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program.Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rafi, A. (2019). A class of four parametric with- and without memory root finding methods. Computational and Mathematical Methods. 1-14. https://doi.org/10.1002/cmm4.1024S114Cordero, A., Junjua, M.-D., Torregrosa, J. R., Yasmin, N., & Zafar, F. (2018). Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices. Mathematical Problems in Engineering, 2018, 1-12. doi:10.1155/2018/8093673Zafar, F., Akram, S., Yasmin, N., & Junjua, M.-D. (2016). On the construction of three step derivative free four-parametric methods with accelerated order of convergence. Journal of Nonlinear Sciences and Applications, 09(06), 4542-4553. doi:10.22436/jnsa.009.06.92King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Herzberger, J. (1974). Über Matrixdarstellungen für Iterationsverfahren bei nichtlinearen Gleichungen. Computing, 12(3), 215-222. doi:10.1007/bf02293107Jay, L. O. (2001). Bit Numerical Mathematics, 41(2), 422-429. doi:10.1023/a:1021902825707Chun, C., & Neta, B. (2015). On the new family of optimal eighth order methods developed by Lotfi et al. Numerical Algorithms, 72(2), 363-376. doi:10.1007/s11075-015-0048-9Gdawiec, K. (2017). Fractal patterns from the dynamics of combined polynomial root finding methods. Nonlinear Dynamics, 90(4), 2457-2479. doi:10.1007/s11071-017-3813-

    A reliable order-statistics-based approximate nearest neighbor search algorithm

    Full text link
    We propose a new algorithm for fast approximate nearest neighbor search based on the properties of ordered vectors. Data vectors are classified based on the index and sign of their largest components, thereby partitioning the space in a number of cones centered in the origin. The query is itself classified, and the search starts from the selected cone and proceeds to neighboring ones. Overall, the proposed algorithm corresponds to locality sensitive hashing in the space of directions, with hashing based on the order of components. Thanks to the statistical features emerging through ordering, it deals very well with the challenging case of unstructured data, and is a valuable building block for more complex techniques dealing with structured data. Experiments on both simulated and real-world data prove the proposed algorithm to provide a state-of-the-art performance

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    On developing an optimal Jarratt-like class for solving nonlinear equations

    Get PDF
    It is attempted to derive an optimal class of methods without memory from Ozban’s method [A. Y. Ozban, Some New Variants of Newton’s Method, Appl. Math. Lett. 17 (2004) 677-682]. To this end, we try to introduce a weight function in the second step of the method and to find some suitable conditions, so that the modified method is optimal in the sense of Kung and Traub’s conjecture. Also, convergence analysis along with numerical implementations are included to verify both theoretical and practical aspects of the proposed optimal class of methods without memory. © 2020 Forum-Editrice Universitaria Udinese SRL. All rights reserved
    corecore