78,287 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Power-Constrained Sparse Gaussian Linear Dimensionality Reduction over Noisy Channels

    Get PDF
    In this paper, we investigate power-constrained sensing matrix design in a sparse Gaussian linear dimensionality reduction framework. Our study is carried out in a single--terminal setup as well as in a multi--terminal setup consisting of orthogonal or coherent multiple access channels (MAC). We adopt the mean square error (MSE) performance criterion for sparse source reconstruction in a system where source-to-sensor channel(s) and sensor-to-decoder communication channel(s) are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE in single-- and multiple--terminal setups. We propose a three-stage sensing matrix optimization scheme that combines semi-definite relaxation (SDR) programming, a low-rank approximation problem and power-rescaling. Under certain conditions, we derive closed-form solutions to the proposed optimization procedure. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the superiority of the proposed scheme by comparing it with other relevant methods. This performance improvement is achieved at the price of higher computational complexity. Hence, in order to address the complexity burden, we present an equivalent stochastic optimization method to the problem of interest that can be solved approximately, while still providing a superior performance over the popular methods.Comment: Accepted for publication in IEEE Transactions on Signal Processing (16 pages

    Joint Pilot Design and Uplink Power Allocation in Multi-Cell Massive MIMO Systems

    Full text link
    This paper considers pilot design to mitigate pilot contamination and provide good service for everyone in multi-cell Massive multiple input multiple output (MIMO) systems. Instead of modeling the pilot design as a combinatorial assignment problem, as in prior works, we express the pilot signals using a pilot basis and treat the associated power coefficients as continuous optimization variables. We compute a lower bound on the uplink capacity for Rayleigh fading channels with maximum ratio detection that applies with arbitrary pilot signals. We further formulate the max-min fairness problem under power budget constraints, with the pilot signals and data powers as optimization variables. Because this optimization problem is non-deterministic polynomial-time hard due to signomial constraints, we then propose an algorithm to obtain a local optimum with polynomial complexity. Our framework serves as a benchmark for pilot design in scenarios with either ideal or non-ideal hardware. Numerical results manifest that the proposed optimization algorithms are close to the optimal solution obtained by exhaustive search for different pilot assignments and the new pilot structure and optimization bring large gains over the state-of-the-art suboptimal pilot design.Comment: 16 pages, 8 figures. Accepted to publish at IEEE Transactions on Wireless Communication

    Design and Performance Analysis of Non-Coherent Detection Systems with Massive Receiver Arrays

    Full text link
    Harvesting the gain of a large number of antennas in a mmWave band has mainly been relying on the costly operation of channel state information (CSI) acquisition and cumbersome phase shifters. Recent works have started to investigate the possibility to use receivers based on energy detection (ED), where a single data stream is decoded based on the channel and noise energy. The asymptotic features of the massive receiver array lead to a system where the impact of the noise becomes predictable due to a noise hardening effect. This in effect extends the communication range compared to the receiver with a small number of antennas, as the latter is limited by the unpredictability of the additive noise. When the channel has a large number of spatial degrees of freedom, the system becomes robust to imperfect channel knowledge due to channel hardening. We propose two detection methods based on the instantaneous and average channel energy, respectively. Meanwhile, we design the detection thresholds based on the asymptotic properties of the received energy. Differently from existing works, we analyze the scaling law behavior of the symbol-error-rate (SER). When the instantaneous channel energy is known, the performance of ED approaches that of the coherent detection in high SNR scenarios. When the receiver relies on the average channel energy, our performance analysis is based on the exact SER, rather than an approximation. It is shown that the logarithm of SER decreases linearly as a function of the number of antennas. Additionally, a saturation appears at high SNR for PAM constellations of order larger than two, due to the uncertainty on the channel energy. Simulation results show that ED, with a much lower complexity, achieves promising performance both in Rayleigh fading channels and in sparse channels
    corecore