1,970 research outputs found

    Global localization based on a rejection differential evolution filter

    Get PDF
    Autonomous systems are able to move from one point to another in a given environment because they can solve two basic problems: the localization problem and the navigation problem. The localization purpose is to determine the current pose of the autonomous robot or system and the navigation purpose is to find out a feasible path from the current pose to the goal point that avoids any obstacle present in the environment. Obviously, without a reliable localization system it is not possible to solve the navigation problem. Both problems are among the oldest problems in human travels and have motivated a considerable amount of technological advances in human history. They are also present in robot motion around the environment and have also motivated a considerable research effort to solve them in an efficient way

    L1-L2 norms comparison in global localization of mobile robots

    Get PDF
    The global localization methods deal with the estimation of the pose of a mobile robot assuming no prior state information about the pose and a complete a priori knowledge of the environment where the mobile robot is going to be localized. Most existing algorithms are based on the minimization of an L2-norm loss function. In spite of the extended use of the L2-norm, the use of the L1-norm offers some alternative advantages. The present work compares the L1-norm and the L2-norm with the same basic optimization mechanism to determine the advantages of each norm when applied to the global localization problem. The algorithm has been tested subject to different noise levels to demonstrate the accuracy, effectiveness, robustness, and computational efficiency of both L1-norm and L2-norm approaches.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid.Publicad

    Coevolution Based Adaptive Monte Carlo Localization

    Get PDF

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Reducing Residual-Mass Effects for Domain-Wall Fermions

    Full text link
    It has been suggested to project out a number of low-lying eigenvalues of the four-dimensional Wilson--Dirac operator that generates the transfer matrix of domain-wall fermions in order to improve simulations with domain-wall fermions. We investigate how this projection method reduces the residual chiral symmetry-breaking effects for a finite extent of the extra dimension. We use the standard Wilson as well as the renormalization--group--improved gauge action. In both cases we find a substantially reduced residual mass when the projection method is employed. In addition, the large fluctuations in this quantity disappear.Comment: 18 pages, 10 figures, references updated, comments adde

    Differential evolution Markov chain filter for global localization

    Get PDF
    A key challenge for an autonomous mobile robot is to estimate its location according to the available information. A particular aspect of this task is the global localization problem. In our previous work, we developed an algorithm based on the Differential Evolution method that solves this problem in 2D and 3D environments. The robot’s pose is represented by a set of possible location estimates weighted by a fitness function. The Markov Chain Monte Carlo algorithms have been successfully applied to multiple fields such as econometrics or computing science. It has been demonstrated that they can be combined with the Differential Evolution method to solve efficiently many optimization problems. In this work, we have combined both approaches to develop a global localization filter. The algorithm performance has been tested in simulated and real maps. The population requirements have been reduced when compared to the previous version.The research leading to these results has received funding from the RoboCity2030-III-CM project (Robotica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU.Publicad
    corecore