1,315 research outputs found

    Switched networks and complementarity

    Get PDF
    A modeling framework is proposed for circuits that are subject both to externally induced switches (time events) and to state events. The framework applies to switched networks with linear and piecewise-linear elements, including diodes. We show that the linear complementarity formulation, which already has proved effective for piecewise-linear networks, can be extended in a natural way to also cover switching circuits. To achieve this, we use a generalization of the linear complementarity problem known as the cone-complementarity problem. We show that the proposed framework is sound in the sense that existence and uniqueness of solutions is guaranteed under a passivity assumption. We prove that only first-order impulses occur and characterize all situations that give rise to a state jump; moreover, we provide rules that determine the jump. Finally, we show that within our framework, energy cannot increase as a result of a jump, and we derive a stability result from this

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Linear complementarity problems on extended second order cones

    Get PDF
    In this paper, we study the linear complementarity problems on extended second order cones. We convert a linear complementarity problem on an extended second order cone into a mixed complementarity problem on the non-negative orthant. We state necessary and sufficient conditions for a point to be a solution of the converted problem. We also present solution strategies for this problem, such as the Newton method and Levenberg-Marquardt algorithm. Finally, we present some numerical examples

    Using EPECs to model bilevel games in restructured electricity markets with locational prices

    Get PDF
    CWPE0619 (EPRG0602) Xinmin Hu and Daniel Ralph (Feb 2006) Using EPECs to model bilevel games in restructured electricity markets with locational prices We study a bilevel noncooperative game-theoretic model of electricity markets with locational marginal prices. Each player faces a bilevel optimization problem that we remodel as a mathematical program with equilibrium constraints, MPEC. This gives an EPEC, equilibrium problem with equilibrium constraints. We establish sufficient conditions for existence of pure strategy Nash equilibria for this class of bilevel games and give some applications. We show by examples the effect of network transmission limits, i.e. congestion, on existence of equilibria. Then we study, for more general EPECs, the weaker pure strategy concepts of local Nash and Nash stationary equilibria. We model the latter via complementarity problems, CPs. Finally, we present numerical examples of methods that attempt to find local Nash or Nash stationary equilibria of randomly generated electricity market games. The CP solver PATH is found to be rather effective in this context
    • …
    corecore