2,001 research outputs found

    A low complexity image compression algorithm for Bayer color filter array

    Get PDF
    Digital image in their raw form requires an excessive amount of storage capacity. Image compression is a process of reducing the cost of storage and transmission of image data. The compression algorithm reduces the file size so that it requires less storage or transmission bandwidth. This work presents a new color transformation and compression algorithm for the Bayer color filter array (CFA) images. In a full color image, each pixel contains R, G, and B components. A CFA image contains single channel information in each pixel position, demosaicking is required to construct a full color image. For each pixel, demosaicking constructs the missing two-color information by using information from neighbouring pixels. After demosaicking, each pixel contains R, G, and B information, and a full color image is constructed. Conventional CFA compression occurs after the demosaicking. However, the Bayer CFA image can be compressed before demosaicking which is called compression-first method, and the algorithm proposed in this research follows the compression-first or direct compression method. The compression-first method applies the compression algorithm directly onto the CFA data and shifts demosaicking to the other end of the transmission and storage process. The advantage of the compression-first method is that it requires three time less transmission bandwidth for each pixel than conventional compression. Compression-first method of CFA data produces spatial redundancy, artifacts, and false high frequencies. The process requires a color transformation with less correlation among the color components than that Bayer RGB color space. This work analyzes correlation coefficient, standard deviation, entropy, and intensity range of the Bayer RGB color components. The analysis provides two efficient color transformations in terms of features of color transformation. The proposed color components show lesser correlation coefficient than occurs with the Bayer RGB color components. Color transformations reduce both the spatial and spectral redundancies of the Bayer CFA image. After color transformation, the components are independently encoded using differential pulse-code modulation (DPCM) in raster order fashion. The residue error of DPCM is mapped to a positive integer for the adaptive Golomb rice code. The compression algorithm includes both the adaptive Golomb rice and Unary coding to generate bit stream. Extensive simulation analysis is performed on both simulated CFA and real CFA datasets. This analysis is extended for the WCE (wireless capsule endoscopic) images. The compression algorithm is also realized with a simulated WCE CFA dataset. The results show that the proposed algorithm requires less bits per pixel than the conventional CFA compression. The algorithm also outperforms recent works on CFA compression algorithms for both real and simulated CFA datasets

    Efficient Encoding of Wireless Capsule Endoscopy Images Using Direct Compression of Colour Filter Array Images

    Get PDF
    Since its invention in 2001, wireless capsule endoscopy (WCE) has played an important role in the endoscopic examination of the gastrointestinal tract. During this period, WCE has undergone tremendous advances in technology, making it the first-line modality for diseases from bleeding to cancer in the small-bowel. Current research efforts are focused on evolving WCE to include functionality such as drug delivery, biopsy, and active locomotion. For the integration of these functionalities into WCE, two critical prerequisites are the image quality enhancement and the power consumption reduction. An efficient image compression solution is required to retain the highest image quality while reducing the transmission power. The issue is more challenging due to the fact that image sensors in WCE capture images in Bayer Colour filter array (CFA) format. Therefore, standard compression engines provide inferior compression performance. The focus of this thesis is to design an optimized image compression pipeline to encode the capsule endoscopic (CE) image efficiently in CFA format. To this end, this thesis proposes two image compression schemes. First, a lossless image compression algorithm is proposed consisting of an optimum reversible colour transformation, a low complexity prediction model, a corner clipping mechanism and a single context adaptive Golomb-Rice entropy encoder. The derivation of colour transformation that provides the best performance for a given prediction model is considered as an optimization problem. The low complexity prediction model works in raster order fashion and requires no buffer memory. The application of colour transformation yields lower inter-colour correlation and allows the efficient independent encoding of the colour components. The second compression scheme in this thesis is a lossy compression algorithm with a integer discrete cosine transformation at its core. Using the statistics obtained from a large dataset of CE image, an optimum colour transformation is derived using the principal component analysis (PCA). The transformed coefficients are quantized using optimized quantization table, which was designed with a focus to discard medically irrelevant information. A fast demosaicking algorithm is developed to reconstruct the colour image from the lossy CFA image in the decoder. Extensive experiments and comparisons with state-of-the-art lossless image compression methods establish the superiority of the proposed compression methods as simple and efficient image compression algorithm. The lossless algorithm can transmit the image in a lossless manner within the available bandwidth. On the other hand, performance evaluation of lossy compression algorithm indicates that it can deliver high quality images at low transmission power and low computation costs

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Object Enhancement, Noise Reduction, Conversion and Collection of Spatiotemporal Image Data

    Get PDF
    In this report, a variety of cellular dynamics are enhanced and analyzed utilizing various algorithms and filter for contrast enhancement. This report will also illustrate the underlying complexities of processing compressed data received from certain type of sensors, their default applications, various methods in converting compressed data to compatible universal uncompressed formats allowed in scientific applications, various methods of image and video capture, guidelines in ethical image manipulation, various methods of frame extraction, and analyzing/processing video images. These methods and processes purposely utilize freeware and public domain software to lower the cost of reproducibility for all

    The JPEG2000 still image compression standard

    Get PDF
    The development of standards (emerging and established) by the International Organization for Standardization (ISO), the International Telecommunications Union (ITU), and the International Electrotechnical Commission (IEC) for audio, image, and video, for both transmission and storage, has led to worldwide activity in developing hardware and software systems and products applicable to a number of diverse disciplines [7], [22], [23], [55], [56], [73]. Although the standards implicitly address the basic encoding operations, there is freedom and flexibility in the actual design and development of devices. This is because only the syntax and semantics of the bit stream for decoding are specified by standards, their main objective being the compatibility and interoperability among the systems (hardware/software) manufactured by different companies. There is, thus, much room for innovation and ingenuity. Since the mid 1980s, members from both the ITU and the ISO have been working together to establish a joint international standard for the compression of grayscale and color still images. This effort has been known as JPEG, the Join
    corecore