2,668 research outputs found

    An Intelligent System For Arabic Text Categorization

    Get PDF
    Text Categorization (classification) is the process of classifying documents into a predefined set of categories based on their content. In this paper, an intelligent Arabic text categorization system is presented. Machine learning algorithms are used in this system. Many algorithms for stemming and feature selection are tried. Moreover, the document is represented using several term weighting schemes and finally the k-nearest neighbor and Rocchio classifiers are used for classification process. Experiments are performed over self collected data corpus and the results show that the suggested hybrid method of statistical and light stemmers is the most suitable stemming algorithm for Arabic language. The results also show that a hybrid approach of document frequency and information gain is the preferable feature selection criterion and normalized-tfidf is the best weighting scheme. Finally, Rocchio classifier has the advantage over k-nearest neighbor classifier in the classification process. The experimental results illustrate that the proposed model is an efficient method and gives generalization accuracy of about 98%

    Linguistically informed and corpus informed morphological analysis of Arabic

    No full text
    Standard English PoS-taggers generally involve tag-assignment (via dictionary-lookup etc) followed by tag-disambiguation (via a context model, e.g. PoS-ngrams or Brill transformations). We want to PoS-tag our Arabic Corpus, but evaluation of existing PoS-taggers has highlighted shortcomings; in particular, about a quarter of all word tokens are not assigned a fully correct morphological analysis. Tag-assignment is significantly more complex for Arabic. An Arabic lemmatiser program can extract the stem or root, but this is not enough for full PoS-tagging; words should be decomposed into five parts: proclitics, prefixes, stem or root, suffixes and postclitics. The morphological analyser should then add the appropriate linguistic information to each of these parts of the word; in effect, instead of a tag for a word, we need a subtag for each part (and possibly multiple subtags if there are multiple proclitics, prefixes, suffixes and postclitics). Many challenges face the implementation of Arabic morphology, the rich “root-and-pattern” nonconcatenative (or nonlinear) morphology and the highly complex word formation process of root and patterns, especially if one or two long vowels are part of the root letters. Moreover, the orthographic issues of Arabic such as short vowels ( َ ُ ِ ), Hamzah (ء أ إ ؤ ئ), Taa’ Marboutah ( ة ) and Ha’ ( ه ), Ya’ ( ي ) and Alif Maksorah( ى ) , Shaddah ( ّ ) or gemination, and Maddah ( آ ) or extension which is a compound letter of Hamzah and Alif ( أا ). Our morphological analyzer uses linguistic knowledge of the language as well as corpora to verify the linguistic information. To understand the problem, we started by analyzing fifteen established Arabic language dictionaries, to build a broad-coverage lexicon which contains not only roots and single words but also multi-word expressions, idioms, collocations requiring special part-of-speech assignment, and words with special part-of-speech tags. The next stage of research was a detailed analysis and classification of Arabic language roots to address the “tail” of hard cases for existing morphological analyzers, and analysis of the roots, word-root combinations and the coverage of each root category of the Qur’an and the word-root information stored in our lexicon. From authoritative Arabic grammar books, we extracted and generated comprehensive lists of affixes, clitics and patterns. These lists were then cross-checked by analyzing words of three corpora: the Qur’an, the Corpus of Contemporary Arabic and Penn Arabic Treebank (as well as our Lexicon, considered as a fourth cross-check corpus). We also developed a novel algorithm that generates the correct pattern of the words, which deals with the orthographic issues of the Arabic language and other word derivation issues, such as the elimination or substitution of root letters

    Handling unknown words in statistical latent-variable parsing models for Arabic, English and French

    Get PDF
    This paper presents a study of the impact of using simple and complex morphological clues to improve the classification of rare and unknown words for parsing. We compare this approach to a language-independent technique often used in parsers which is based solely on word frequencies. This study is applied to three languages that exhibit different levels of morphological expressiveness: Arabic, French and English. We integrate information about Arabic affixes and morphotactics into a PCFG-LA parser and obtain stateof-the-art accuracy. We also show that these morphological clues can be learnt automatically from an annotated corpus
    • …
    corecore