6,051 research outputs found

    NEW ROBUST-ADAPTIVE ALGORITHM FOR TRACKING CONTROL OF ROBOT MANIPULATORS

    Get PDF
    National Natural Science Foundation of China [60704043]; Research Fund for the Doctoral Program of Higher Education [20070384031]Based on a continuous piecewise-differentiable increasing function (CPDIF), a new simple robust-adaptive tracking control algorithm is proposed in this paper for robot manipulators. In the Structure of the proposed adaptive controller, output of the estimator is filtered by some CPDIF and then is employed in the controller. Therefore, in some sense, this robust-adaptive approach can be taken as the extension of the conventional adaptive scheme. Due to this bounded filter function, phenomena of parameter drift are overcome accordingly. When the true parameters are contained within the estimated parameter range, asymptotic stability is obtained even though persistency of excitation is not satisfied. Furthermore, the designed controller renders the resulting system uniformly ultimately bounded stable in the presence of disturbance and/or the improper estimate of parameter range especially, namely, robustness is also guaranteed. Finally, simulation results demonstrate the above statements

    Experimental comparison of parameter estimation methods in adaptive robot control

    Get PDF
    In the literature on adaptive robot control a large variety of parameter estimation methods have been proposed, ranging from tracking-error-driven gradient methods to combined tracking- and prediction-error-driven least-squares type adaptation methods. This paper presents experimental data from a comparative study between these adaptation methods, performed on a two-degrees-of-freedom robot manipulator. Our results show that the prediction error concept is sensitive to unavoidable model uncertainties. We also demonstrate empirically the fast convergence properties of least-squares adaptation relative to gradient approaches. However, in view of the noise sensitivity of the least-squares method, the marginal performance benefits, and the computational burden, we (cautiously) conclude that the tracking-error driven gradient method is preferred for parameter adaptation in robotic applications

    Robust adaptive kinematic control of redundant robots

    Get PDF
    The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments

    Nonlinear Receding-Horizon Control of Rigid Link Robot Manipulators

    Full text link
    The approximate nonlinear receding-horizon control law is used to treat the trajectory tracking control problem of rigid link robot manipulators. The derived nonlinear predictive law uses a quadratic performance index of the predicted tracking error and the predicted control effort. A key feature of this control law is that, for their implementation, there is no need to perform an online optimization, and asymptotic tracking of smooth reference trajectories is guaranteed. It is shown that this controller achieves the positions tracking objectives via link position measurements. The stability convergence of the output tracking error to the origin is proved. To enhance the robustness of the closed loop system with respect to payload uncertainties and viscous friction, an integral action is introduced in the loop. A nonlinear observer is used to estimate velocity. Simulation results for a two-link rigid robot are performed to validate the performance of the proposed controller. Keywords: receding-horizon control, nonlinear observer, robot manipulators, integral action, robustness
    • …
    corecore