2,455 research outputs found

    New Robust Exponential Stability Criterion for Uncertain Neutral Systems with Discrete and Distributed Time-Varying Delays and Nonlinear Perturbations

    Get PDF
    We investigate the problem of robust exponential stability for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Based on the combination of descriptor model transformation, decomposition technique of coefficient matrix, and utilization of zero equation and new Lyapunov functional, sufficient conditions for robust exponential stability are obtained and formulated in terms of linear matrix inequalities (LMIs). The new stability conditions are less conservative and more general than some existing results

    Stability Analysis for Markovian Jump Neutral Systems with Mixed Delays and Partially Known Transition Rates

    Get PDF
    The delay-dependent stability problem is studied for Markovian jump neutral systems with partial information on transition probabilities, and the considered delays are mixed and model dependent. By constructing the new stochastic Lyapunov-Krasovskii functional, which combined the introduced free matrices with the analysis technique of matrix inequalities, a sufficient condition for the systems with fully known transition rates is firstly established. Then, making full use of the transition rate matrix, the results are obtained for the other case, and the uncertain neutral Markovian jump system with incomplete transition rates is also considered. Finally, to show the validity of the obtained results, three numerical examples are provided

    New synchronization criteria for an array of neural networks with hybrid coupling and time-varying delays

    Get PDF
    This paper is concerned with the global exponential synchronization for an array of hybrid coupled neural networks with time-varying leakage delay, discrete and distributed delays. Applying a novel Lyapunov functional and the property of outer coupling matrices of the neural networks, sufficient conditions are obtained for the global exponential synchronization of the system. The derived synchronization criteria are closely related with the time-varying delays and the coupling structure of the networks. The maximal allowable upper bounds of the time-varying delays can be obtained guaranteeing the global synchronization for the neural networks. The method we adopt in this paper is different from the commonly used linear matrix inequality (LMI) technique, and our synchronization conditions are new, which are easy to check in comparison with the previously reported LMI-based ones. Some examples are given to show the effectiveness of the obtained theoretical results

    Design of sliding-mode observer for a class of uncertain neutral stochastic systems

    Get PDF
    © 2016 Informa UK Limited, trading as Taylor & Francis Group. The problem of robust H∞ control for a class of uncertain neutral stochastic systems (NSS) is investigated by utilising the sliding-mode observer (SMO) technique. This paper presents a novel observer and integral-type sliding-surface design, based on which a new sufficient condition guaranteeing the resultant sliding-mode dynamics (SMDs) to be mean-square exponentially stable with a prescribed level of H∞ performance is derived. Then, an adaptive reaching motion controller is synthesised to lead the system to the predesigned sliding surface in finite-time almost surely. Finally, two illustrative examples are exhibited to verify the validity and superiority of the developed scheme

    Finite-time Anti-synchronization of Memristive Stochastic BAM Neural Networks with Probabilistic Time-varying Delays

    Get PDF
    This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilistic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Secondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti-synchronization of the neural networks. Thirdly, by employing some inequality technique and constructing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number simulation is provided to demonstrate the effectiveness of the proposed mechanism
    corecore