10,804 research outputs found

    Real-Time Order Acceptance and Scheduling Problems in a Flow Shop Environment Using Hybrid GA-PSO Algorithm

    Get PDF

    Natural Language Dialogue Service for Appointment Scheduling Agents

    Get PDF
    Appointment scheduling is a problem faced daily by many individuals and organizations. Cooperating agent systems have been developed to partially automate this task. In order to extend the circle of participants as far as possible we advocate the use of natural language transmitted by e-mail. We describe COSMA, a fully implemented German language server for existing appointment scheduling agent systems. COSMA can cope with multiple dialogues in parallel, and accounts for differences in dialogue behaviour between human and machine agents. NL coverage of the sublanguage is achieved through both corpus-based grammar development and the use of message extraction techniques.Comment: 8 or 9 pages, LaTeX; uses aclap.sty, epsf.te

    Does Order Negotiation Improve The Job-Shop Workload Control?

    Get PDF
    Work flows in a job-shop are determined not only by the release load and the time between release factors, but also by the number of accepted orders. There has been extensive research on workload and input-output control aiming at improving the performance of manufacturing operations in job-shops. This paper explores the idea of controlling the workload since the acceptance/rejection of orders stage. A new acceptance/rejection rule is proposed, and tests are conducted to study the sensitivity of job-shop performance to different order acceptance parameters, like the tolerance of the workload limit and the due date extension acceptance. It also evaluates the effect of the negotiation phase of the proposed acceptance rule on the job-shop performance using a simulation model of a generic random job-shop. The extensive simulation experiments allow us to conclude that having a negotiation phase prior to rejection improves almost all workload performance measures. We also conclude that different tolerances of the workload limit affect slightly the performance of the job-shop.job shop, order negotiation, workload control

    Evaluation of different dispatching rules in computer integrated manufacturing using design of experiment techniques

    Get PDF
    This research is based on the study of process planning and scheduling in job shop flexible manufacturing systems. This project need to evaluate planning algorithms, determine appropriate algorithms and suggest better algorithm as a tool to optimize the process planning. Extensive computational experiments are carried out to verify the efficiency of our algorithm using OpenCIM software. By using the OpenCIM simulation software, the evalution of planning algorithms were carried out base on different scheduling algorithms such as First In First Out (FIFO), Shortest Processing Time (SPT), and Maximum Priority. The target of this study is to evaluate the performance of selected dispatching rules for different operation on the existing Computer Integrated Manufacturing (CIM) facility using a simulation model against different performance measures and to compare the results with the literature. Three factors with three levels of severity along with 3 different scheduling dispatching rules, a 3 x 3 x 3 = 27 full factorial Design of Experiment (DOE) set-up were used to evaluated the performance of the system under study. Analysis of variance (AVONA) was used to identify the interactions between factors. Three performance measures, Total Run Time, Maximum Queue Length and Machine Efficiency were used in the experiments. The system performance depended on Machine Efficiency when the number of released parts is maximum and the number of priority is minimum. Furthermore, considering the maximum queue length, the system performs much better when the selected dispatching rule is either MAX PRIORITY or SPT with number of priority is one and number of part release is eight. The system’s total run time performs markedly better when the number of released parts is set at eight or higher. It was concluded that the overall best simple dispatching rules among all other simple rules in order of their performance are Shortest Processing Time (SPT), Maximum Priority, First In First Out (FIFO)

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance

    Get PDF
    Increasing energy price and requirements to reduce emission are new chal-lenges faced by manufacturing enterprises. A considerable amount of energy is wasted by machines due to their underutilisation. Consequently, energy saving can be achieved by turning off the machines when they lay idle for a comparatively long period. Otherwise, turning the machine off and back on will consume more energy than leave it stay idle. Thus, an effective way to reduce energy consumption at the system level is by employing intelligent scheduling techniques which are capable of integrating fragmented short idle periods on the machines into large ones. Such scheduling will create opportunities for switching off underutilised resources while at the same time maintaining the production performance. This paper introduces a model for the bi-objective optimisation problem that minimises the total non-processing electricity consumption and total weighted tardiness in a job shop. The Turn off/Turn on is applied as one of the electricity saving approaches. A novel multi-objective genetic algorithm based on NSGA-II is developed. Two new steps are introduced for the purpose of expanding the solution pool and then selecting the elite solutions. The research presented in this paper is focused on the classical job shop envi-ronment, which is widely used in the manufacturing industry and provides considerable opportunities for energy saving. The algorithm is validated on job shop problem instances to show its effectiveness. Keywords: Energy efficient production plannin

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms

    Combined make-to-order and make-to-stock in a food production system

    Get PDF
    The research into multi-product production/inventory control systems has mainly assumed one of the two strategies: Make-to-Order (MTO) or Make-to-Stock (MTS). In practice, however, many companies cater to an increasing variety of products with varying logistical demands (e.g. short due dates, specific products) and production characteristics (e.g. capacity usage, setup) to different market segments and so they are moving to more MTO-production. As a consequence they operate under a hybrid MTO-MTS strategy. Important issues arising out of such situations are, for example, which products should be manufactured to stock and which ones on order and, how to allocate capacity among various MTO-MTS products. This paper presents the state-of-the-art literature review of the combined MTO-MTS production situations. A variety of production management issues in the context of food processing companies, where combined MTO-MTS production is quite common, are discussed in details. The authors propose a comprehensive hierarchical planning framework that covers the important production management decisions to serve as a starting point for evaluation and further research on the planning system for MTO-MTS situations.

    Controlling the order pool in make-to-order production systems

    Get PDF
    • 

    corecore