15,932 research outputs found

    On the existence of a solution to a spectral estimation problem \emph{\`a la} Byrnes-Georgiou-Lindquist

    Full text link
    A parametric spectral estimation problem in the style of Byrnes, Georgiou, and Lindquist was posed in \cite{FPZ-10}, but the existence of a solution was only proved in a special case. Based on their results, we show that a solution indeed exists given an arbitrary matrix-valued prior density. The main tool in our proof is the topological degree theory.Comment: 6 pages of two-column draft, accepted for publication in IEEE-TA

    A new family of high-resolution multivariate spectral estimators

    Full text link
    In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Simulations suggest that the most suitable solution of this family depends on the specific features required from the estimation problem

    Likelihood Analysis of Power Spectra and Generalized Moment Problems

    Full text link
    We develop an approach to spectral estimation that has been advocated by Ferrante, Masiero and Pavon and, in the context of the scalar-valued covariance extension problem, by Enqvist and Karlsson. The aim is to determine the power spectrum that is consistent with given moments and minimizes the relative entropy between the probability law of the underlying Gaussian stochastic process to that of a prior. The approach is analogous to the framework of earlier work by Byrnes, Georgiou and Lindquist and can also be viewed as a generalization of the classical work by Burg and Jaynes on the maximum entropy method. In the present paper we present a new fast algorithm in the general case (i.e., for general Gaussian priors) and show that for priors with a specific structure the solution can be given in closed form.Comment: 17 pages, 4 figure

    Time and spectral domain relative entropy: A new approach to multivariate spectral estimation

    Full text link
    The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed}. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.Comment: 32 pages, submitted for publicatio

    A globally convergent matricial algorithm for multivariate spectral estimation

    Full text link
    In this paper, we first describe a matricial Newton-type algorithm designed to solve the multivariable spectrum approximation problem. We then prove its global convergence. Finally, we apply this approximation procedure to multivariate spectral estimation, and test its effectiveness through simulation. Simulation shows that, in the case of short observation records, this method may provide a valid alternative to standard multivariable identification techniques such as MATLAB's PEM and MATLAB's N4SID
    • …
    corecore