96,471 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Bayesian Learning Networks Approach to Cybercrime Detection

    Get PDF
    The growing dependence of modern society on telecommunication and information networks has become inevitable. The increase in the number of interconnected networks to the Internet has led to an increase in security threats and cybercrimes such as Distributed Denial of Service (DDoS) attacks. Any Internet based attack typically is prefaced by a reconnaissance probe process, which might take just a few minutes, hours, days, or even months before the attack takes place. In order to detect distributed network attacks as early as possible, an under research and development probabilistic approach, which is known by Bayesian networks has been proposed. This paper shows how probabilistically Bayesian network detects communication network attacks, allowing for generalization of Network Intrusion Detection Systems (NIDSs). Learning Agents which deploy Bayesian network approach are considered to be a promising and useful tool in determining suspicious early events of Internet threats and consequently relating them to the following occurring activities.Peer reviewe
    • 

    corecore