1,725 research outputs found

    Frequency Response of Uncertain Systems: Strong Kharitonov-Like Results

    Full text link
    In this paper, we study the frequency response of uncertain systems using Kharitonov stability theory on first order complex polynomial set. For an interval transfer function, we show that the minimal real part of the frequency response at any fixed frequency is attained at some prescribed vertex transfer functions. By further geometric and algebraic analysis, we identify an index for strict positive realness of interval transfer functions. Some extensions and applications in positivity verification and robust absolute stability of feedback control systems are also presented.Comment: 18 pages, 8 figure

    Robust and Resilient State Dependent Control of Discrete-Time Nonlinear Systems with General Performance Criteria

    Get PDF
    A novel state dependent control approach for discrete-time nonlinear systems with general performance criteria is presented. This controller is robust for unstructured model uncertainties, resilient against bounded feedback control gain perturbations in achieving optimality for general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. For the system model, unstructured uncertainty description is assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive real uncertainties as special cases. By solving a state dependent linear matrix inequality at each time step, sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this paper unify existing results on nonlinear quadratic regulator, H∞ and positive real control to provide a novel robust control design. The effectiveness of the proposed technique is demonstrated by simulation of the control of inverted pendulum

    Robust and Resilient State-dependent Control of Continuous-time Nonlinear Systems with General Performance Criteria

    Get PDF
    A novel state-dependent control approach for continuous-time nonlinear systems with general performance criteria is presented in this paper. This controller is optimally robust for model uncertainties and resilient against control feedback gain perturbations in achieving general performance criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic dissipative type of disturbance reduction. For the system model, unstructured uncertainty description is assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive real uncertainties as special cases. By solving a state-dependent linear matrix inequality at each time, sufficient condition for the control solution can be found which satisfies the general performance criteria. The results of this paper unify existing results on nonlinear quadratic regulator, H∞ and positive real control. The efficacy of the proposed technique is demonstrated by numerical simulations of the nonlinear control of the inverted pendulum on a cart system
    • …
    corecore