2,694 research outputs found

    Obstacle Avoidance and Proscriptive Bayesian Programming

    Get PDF
    Unexpected events and not modeled properties of the robot environment are some of the challenges presented by situated robotics research field. Collision avoidance is a basic security requirement and this paper proposes a probabilistic approach called Bayesian Programming, which aims to deal with the uncertainty, imprecision and incompleteness of the information handled to solve the obstacle avoidance problem. Some examples illustrate the process of embodying the programmer preliminary knowledge into a Bayesian program and experimental results of these examples implementation in an electrical vehicle are described and commented. A video illustration of the developed experiments can be found at http://www.inrialpes.fr/sharp/pub/laplac

    Simulation of Claylike Colloids

    Get PDF
    We investigate properties of dense suspensions and sediments of small spherical silt particles by means of a combined Molecular Dynamics (MD) and Stochastic Rotation Dynamics (SRD) simulation. We include van der Waals and effective electrostatic interactions between the colloidal particles, as well as Brownian motion and hydrodynamic interactions which are calculated in the SRD-part. We present the simulation technique and first results. We have measured velocity distributions, diffusion coefficients, sedimentation velocity, spatial correlation functions and we have explored the phase diagram depending on the parameters of the potentials and on the volume fraction.Comment: 20 pages, 14 figure

    From individual behaviour to an evaluation of the collective evolution of crowds along footbridges

    Full text link
    This paper proposes a crowd dynamic macroscopic model grounded on microscopic phenomenological observations which are upscaled by means of a formal mathematical procedure. The actual applicability of the model to real world problems is tested by considering the pedestrian traffic along footbridges, of interest for Structural and Transportation Engineering. The genuinely macroscopic quantitative description of the crowd flow directly matches the engineering need of bulk results. However, three issues beyond the sole modelling are of primary importance: the pedestrian inflow conditions, the numerical approximation of the equations for non trivial footbridge geometries, and the calibration of the free parameters of the model on the basis of in situ measurements currently available. These issues are discussed and a solution strategy is proposed.Comment: 23 pages, 10 figures in J. Engrg. Math., 201

    Deviation warnings of ferries based on artificial potential field and historical data

    Get PDF
    Ferries are usually used for transporting passengers and vehicles among docks, and any deviation of the course can lead to serious consequences. Therefore, transportation ferries must be watched closely by local maritime administrators, which involves much manpower. With the use of historical data, this article proposes an intelligent method of integrating artificial potential field with Bayesian Network to trigger deviation warnings for a ferry based on its trajectory, speed and course. More specifically, a repulsive potential field-based model is first established to capture a customary waterway of ferries. Subsequently, a method based on non-linear optimisation is introduced to train the coefficients of the proposed repulsive potential field. The deviation of a ferry from the customary route can then be quantified by the potential field. Bayesian Network is further introduced to trigger deviation warnings in accordance with the distribution of deviation values, speeds and courses. Finally, the proposed approach is validated by the historical data of a chosen ferry on a specific route. The testing results show that the approach is capable of providing deviation warnings for ferries accurately and can offer a practical solution for maritime supervision. © IMechE 2019

    Path Planning of Industrial Manipulators for Dynamic Obstacles using a New Sensory System

    Get PDF
    Industrial manipulators perform repetitive and dangerous tasks. They are widely used, however present a source for accidental collisions with human operators. Therefore, they require large isolated spaces heavily taxing factory real-estate. Thus, there exists a need to create a safe cooperative working space shared by both manipulators and humans. The purpose of this research is to provide such an environment by integrating a safety mat-style sensory system, with an implementation of a potential field trajectory planning algorithm. The safety mat sensor has been designed and constructed in a cost effective means acting as a proof of concept for future industrial applications. Both the safety mat and potential field algorithm have been integrated with a CRS F3 manipulator for conducting validation experiments. We have found that our implementation of the potential field algorithm can successfully avoid single, and multiple obstacles detected by the mat. Moreover, collision avoidance is achieved for both static and dynamic obstacles. Finally, our implementation of the potential field algorithm is capable of preventing local minima entrapment of the manipulator, a problem affecting past implementations

    Radiation Therapy Medical Physics Review – Delivery, Interactions, Safety, Feasibility, and Head to Head Comparisons of the Leading Radiation Therapy Techniques

    Get PDF
    Radiation therapy uses high energy radiation to kill cancer cells. Radiation therapy for cancer treatment can take the form of photon therapy (using x-rays and gamma rays), or charged particle therapy including proton therapy and electron therapy. Within these categories, numerous methods of delivery have been developed. For example, a certain type of radiation can be administered by a machine outside of the body, called external-beam radiation therapy, or by a “seed” placed inside of the body near cancer cells, called internal radiation therapy or brachytherapy. Approximately half of all cancer patients receive radiation therapy, and the form of radiation treatment depends on the type of tumor, location of the tumor, available resources, and characteristics of the individual receiving treatment. In the current paper, we discuss and review the various forms of radiation therapy, the physics behind these treatments, the effectiveness of each treatment type compared with the others, the latest research on radiation therapy treatment, and future research directions. We found that proton therapy is the most promising and effective form of radiation therapy, with photon methods such as intensity modulated radiation therapy, 3D-conformal radiation therapy, image guided radiation therapy, and volumetric modulated radiation therapy also showing very good comparative performance

    Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

    Full text link
    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.Comment: 24 pages, 13 figure
    • …
    corecore