589 research outputs found

    Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension

    Full text link
    In binary images, the distance transformation (DT) and the geometrical skeleton extraction are classic tools for shape analysis. In this paper, we present time optimal algorithms to solve the reverse Euclidean distance transformation and the reversible medial axis extraction problems for dd-dimensional images. We also present a dd-dimensional medial axis filtering process that allows us to control the quality of the reconstructed shape

    Robust semi-automated path extraction for visualising stenosis of the coronary arteries

    Get PDF
    Computed tomography angiography (CTA) is useful for diagnosing and planning treatment of heart disease. However, contrast agent in surrounding structures (such as the aorta and left ventricle) makes 3-D visualisation of the coronary arteries difficult. This paper presents a composite method employing segmentation and volume rendering to overcome this issue. A key contribution is a novel Fast Marching minimal path cost function for vessel centreline extraction. The resultant centreline is used to compute a measure of vessel lumen, which indicates the degree of stenosis (narrowing of a vessel). Two volume visualisation techniques are presented which utilise the segmented arteries and lumen measure. The system is evaluated and demonstrated using synthetic and clinically obtained datasets

    Spline-based medial axis transform representation of binary images

    Get PDF
    Medial axes are well-known descriptors used for representing, manipulating, and compressing binary images. In this paper, we present a full pipeline for computing a stable and accurate piece-wise B-spline representation of Medial Axis Transforms (MATs) of binary images. A comprehensive evaluation on a benchmark shows that our method, called Spline-based Medial Axis Transform (SMAT), achieves very high compression ratios while keeping quality high. Compared with the regular MAT representation, the SMAT yields a much higher compression ratio at the cost of a slightly lower image quality. We illustrate our approach on a multi-scale SMAT representation, generating super-resolution images, and free-form binary image deformation

    Coarse-to-fine skeleton extraction for high resolution 3D meshes

    Get PDF
    This paper presents a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis of Torsello and Hancock [1]. In order to cope with the exponential growth of the number of voxels, we compute a first coarse discretization of the mesh which is iteratively refined until a desired resolution is achieved. The refinement criterion relies on the analysis of the momentum field, where only the voxels with a suitable value of the divergence are exploded to a lower level of the hierarchy. In order to compensate for the discretization errors incurred at the coarser levels, a dilation procedure is added at the end of each iteration. Finally we design a simple alignment procedure to correct the displacement of the extracted skeleton with respect to the true underlying medial surface. We evaluate the proposed approach with an extensive series of qualitative and quantitative experiments
    • …
    corecore