45,279 research outputs found

    New Structured Matrix Methods for Real and Complex Polynomial Root-finding

    Full text link
    We combine the known methods for univariate polynomial root-finding and for computations in the Frobenius matrix algebra with our novel techniques to advance numerical solution of a univariate polynomial equation, and in particular numerical approximation of the real roots of a polynomial. Our analysis and experiments show efficiency of the resulting algorithms.Comment: 18 page

    Simple and Nearly Optimal Polynomial Root-finding by Means of Root Radii Approximation

    Full text link
    We propose a new simple but nearly optimal algorithm for the approximation of all sufficiently well isolated complex roots and root clusters of a univariate polynomial. Quite typically the known root-finders at first compute some crude but reasonably good approximations to well-conditioned roots (that is, those isolated from the other roots) and then refine the approximations very fast, by using Boolean time which is nearly optimal, up to a polylogarithmic factor. By combining and extending some old root-finding techniques, the geometry of the complex plane, and randomized parametrization, we accelerate the initial stage of obtaining crude to all well-conditioned simple and multiple roots as well as isolated root clusters. Our algorithm performs this stage at a Boolean cost dominated by the nearly optimal cost of subsequent refinement of these approximations, which we can perform concurrently, with minimum processor communication and synchronization. Our techniques are quite simple and elementary; their power and application range may increase in their combination with the known efficient root-finding methods.Comment: 12 pages, 1 figur

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Novel Approach to Real Polynomial Root-finding and Matrix Eigen-solving

    Full text link
    Univariate polynomial root-finding is both classical and important for modern computing. Frequently one seeks just the real roots of a polynomial with real coefficients. They can be approximated at a low computational cost if the polynomial has no nonreal roots, but typically nonreal roots are much more numerous than the real ones. We dramatically accelerate the known algorithms in this case by exploiting the correlation between the computations with matrices and polynomials, extending the techniques of the matrix sign iteration, and exploiting the structure of the companion matrix of the input polynomial. We extend some of the proposed techniques to the approximation of the real eigenvalues of a real nonsymmetric matrix.Comment: 17 pages, added algorithm

    SqFreeEVAL: An (almost) optimal real-root isolation algorithm

    Full text link
    Let f be a univariate polynomial with real coefficients, f in R[X]. Subdivision algorithms based on algebraic techniques (e.g., Sturm or Descartes methods) are widely used for isolating the real roots of f in a given interval. In this paper, we consider a simple subdivision algorithm whose primitives are purely numerical (e.g., function evaluation). The complexity of this algorithm is adaptive because the algorithm makes decisions based on local data. The complexity analysis of adaptive algorithms (and this algorithm in particular) is a new challenge for computer science. In this paper, we compute the size of the subdivision tree for the SqFreeEVAL algorithm. The SqFreeEVAL algorithm is an evaluation-based numerical algorithm which is well-known in several communities. The algorithm itself is simple, but prior attempts to compute its complexity have proven to be quite technical and have yielded sub-optimal results. Our main result is a simple O(d(L+ln d)) bound on the size of the subdivision tree for the SqFreeEVAL algorithm on the benchmark problem of isolating all real roots of an integer polynomial f of degree d and whose coefficients can be written with at most L bits. Our proof uses two amortization-based techniques: First, we use the algebraic amortization technique of the standard Mahler-Davenport root bounds to interpret the integral in terms of d and L. Second, we use a continuous amortization technique based on an integral to bound the size of the subdivision tree. This paper is the first to use the novel analysis technique of continuous amortization to derive state of the art complexity bounds
    • …
    corecore