65 research outputs found

    Study of the impact of lithography techniques and the current fabrication processes on the design rules of tridimensional fabrication technologies

    Get PDF
    Working for the photolithography tool manufacturer leader sometimes gives me the impression of how complex and specific is the sector I am working on. This master thesis topic came with the goal of getting the overall picture of the state-of-the-art: stepping out and trying to get a helicopter view usually helps to understand where a process is in the productive chain, or what other firms and markets are doing to continue improvingUniversidad de sevilla.Máster Universitario en Microelectrónica: Diseño y Aplicaciones de Sistemas Micro/Nanométrico

    Intermetallic Bonding for High-Temperature Microelectronics and Microsystems: Solid-Liquid Interdiffusion Bonding

    Get PDF
    Solid-liquid interdiffusion (SLID) bonding for microelectronics and microsystems is a bonding technique relying on intermetallics. The high-melting temperature of intermetallics allows for system operation at far higher temperatures than what solder-bonded systems can do, while still using similar process temperatures as in common solder processes. Additional benefits of SLID bonding are possibilities of fine-pitch bonding, as well as thin-layer metallurgical bonding. Our group has worked on a number of SLID metal systems. We have optimized wafer-level Cu-Sn SLID bonding to become an industrially feasible process, and we have verified the reliability of Au-Sn SLID bonding in a thermally mismatched system, as well as determined the actual phases present in an Au-Sn SLID bond. We have demonstrated SLID bonding for very high temperatures (Ni-Sn, having intermetallics with melting points up to 1280°C), as well as SLID with low process temperatures (Au-In, processed at 180°C, and Au-In-Bi, processed at 90–115°C). We have verified experimentally the high-temperature stability for our systems, with quantified strength at temperatures up to 300°C for three of the systems: Cu-Sn, Au-Sn and Au-In

    US Microelectronics Packaging Ecosystem: Challenges and Opportunities

    Full text link
    The semiconductor industry is experiencing a significant shift from traditional methods of shrinking devices and reducing costs. Chip designers actively seek new technological solutions to enhance cost-effectiveness while incorporating more features into the silicon footprint. One promising approach is Heterogeneous Integration (HI), which involves advanced packaging techniques to integrate independently designed and manufactured components using the most suitable process technology. However, adopting HI introduces design and security challenges. To enable HI, research and development of advanced packaging is crucial. The existing research raises the possible security threats in the advanced packaging supply chain, as most of the Outsourced Semiconductor Assembly and Test (OSAT) facilities/vendors are offshore. To deal with the increasing demand for semiconductors and to ensure a secure semiconductor supply chain, there are sizable efforts from the United States (US) government to bring semiconductor fabrication facilities onshore. However, the US-based advanced packaging capabilities must also be ramped up to fully realize the vision of establishing a secure, efficient, resilient semiconductor supply chain. Our effort was motivated to identify the possible bottlenecks and weak links in the advanced packaging supply chain based in the US.Comment: 22 pages, 8 figure

    Physical Aspects of VLSI Design with a Focus on Three-Dimensional Integrated Circuit Applications

    Get PDF
    This work is on three-dimensional integration (3DI), and physical problems and aspects of VLSI design. Miniaturization and highly complex integrated systems in microelectronics have led to the 3DI development as a promising technological approach. 3DI offers numerous advantages: Size, power consumption, hybrid integration etc., with more thermal problems and physical complexity as trade-offs. We open this work by presenting the design and testing of an example 3DI system, to our knowledge the first self-powering system in a three-dimensional SOI technology. The system uses ambient optical energy harvested by a photodiode array and stored in an integrated capacitor. An on-chip metal interconnect network, beyond its designed role, behaves as a parasitic load vulnerable to electromagnetic coupling. We have developed a spatially-dependent, transient Green's Function based method of calculating the response of an interconnect network to noise. This efficient method can model network delays and noise sensitivity, which are involved problems in both planar and especially in 3DICs. Three-dimensional systems are more susceptible to thermal problems, which also affect VLSI with high power densities, of complex systems and under extreme temperatures. We analytically and experimentally investigate thermal effects in ICs. We study the effects of non-uniform, non-isotropic thermal conductivity of the typically complex IC material system, with a simulator we developed including this complexity. Through our simulations, verified by experiments, we propose a method of cooling or directionally heating IC regions. 3DICs are suited for developing wireless sensor networks, commonly referred to as ``smart dust.'' The ideal smart dust node includes RF communication circuits with on-chip passive components. We present an experimental study of on-chip inductors and transformers as integrated passives. We also demonstrate the performance improvement in 3DI with its lower capacitive loads. 3DI technology is just one example of the intense development in today's electronics, which maintains the need for educational methods to assist student recruitment into technology, to prepare students for a demanding technological landscape, and to raise societal awareness of technology. We conclude this work by presenting three electrical engineering curricula we designed and implemented, targeting these needs among others

    A Dry Etch Approach To Reduce Roughness And Eliminate Visible Grind Marks In Silicon Wafers Post Back-grind

    Get PDF
    3D wafer packaging represents a significant component of the total wafer level processing cost. Replacement of the Chemical Mechanical Polishing (CMP) process step with a corresponding dry etch can yield significant time and cost savings. Incorporating equipment already utilized in the 3D integrated wafer packaging process during the subsequent Through Silicon Via (TSV) reveal step, process efficiencies can be achieved, with overall die yields being maintained. Using dry etch technology to treat a 200nm rough back-ground silicon surface, a smooth surface with a peak to valley roughness of less than 6nm is demonstrated. This patented process differs from other dry etch smoothing techniques in that it aims to eliminate any visual grind marks rather than just reducing the surface roughness. The elimination of visible grind marks is critical in later optical inspection where they are falsely identified as defects. The quality of the surface is equivalent to that of a CMP processed wafer and as such, this process has been implemented in manufacturing replacing the CMP step. The novel process described combines a surface modification followed by a roughness reduction in an iterative manner to produce a smooth surface without visible grind marks post processing

    Une méthode d'alignement passive pour le collage de surfaces planes utilisant le squeeze flow

    Get PDF
    Afin de répondre aux besoins d’assemblage par collage d’une interface optoélectronique, une méthode de positionnement passive a été développée. Cette méthode présente la particularité de ne pas nécessiter de contact mécanique entre les pièces mais utilise le champ de pression généré entre elles, dans l’adhésif lors du collage, pour corriger leur parallélisme. Pour cela, une étude de l’écoulement d’un fluide pressé entre deux plaques a été menée, d’abord analytiquement, puis par la méthode des éléments finis. Cette étude a permis de déterminer les efforts qui s’exercent sur les surfaces des plaques lors du collage et qui peuvent être utilisés pour corriger leur parallélisme. Ces résultats ont ensuite été utilisés pour concevoir une plateforme d’assemblage capable de s’incliner pour rendre les plaques parallèles. L’instrumentation de cette plateforme permet de mesurer les efforts au cours de l’assemblage. Les essais réalisés ont montré un réalignement des plaques, mais les efforts mesurés se sont avérés inférieurs aux prévisions du modèle éléments finis. Des mesures de rhéologie, réalisées sur le fluide utilisé comme adhésif pour les essais, ont mis en évidence un comportement non- Newtonien de celui-ci à des taux de cisaillement élevés. Ces mesures ont conduit au développement d’un nouveau modèle éléments finis, tenant compte de ce comportement et donnant des résultats plus proches des valeurs expérimentales
    • …
    corecore