131 research outputs found

    Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    Get PDF
    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced

    A FEEDBACK-BASED DYNAMIC INSTRUMENT FOR MEASURING THE MECHANICAL PROPERTIES OF SOFT TISSUES

    Get PDF
    In this paper, a novel feedback-based dynamic instrument integrated into a Minimally- Invasive-Surgery (MIS) tool to evaluate the mechanical impedance of soft tissues is presented. This instrument is capable of measuring viscoelasticity of tissues if specific boundary conditions are known. Some important advantages of the proposed instrument are that it is robust and simple in comparison to other similar instruments as it does not require magnitude information of plant’s displacement output and no force sensor is used. The precision and accuracy of the measurements of the proposed instrument for soft tissues is noticeably higher than similar instruments, which are not optimized to work with soft tissues. The proposed dynamic instrument is designed to detect the frequency shifts caused by contacting a soft tissue using an improved phase-locked loop feedback system (closed loop). These frequency shifts can then be used to evaluate the mechanical properties of the tissue. The closed-loop method works fast (with an approximate resonance-frequency-shift rate of 15 Hz per second), and is capable of measuring dy­ namic mechanical properties of viscoelastic tissues, while previous focus was mostly on static/quasi-static elastic modulus. The instrument is used to evaluate the equivalent stiffness of several springs and cantilever beams, mass of reference samples, and also the frequency shifts of several phantoms with injected tumors, noting that these frequency shifts can be used to measure the viscoelasticity of the tissues. It is also shown that the instrument can be used for tumor localization in these phantoms

    NASA Tech Briefs, January 1995

    Get PDF
    Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Report

    Compromises in orchestra pit design: A ten-year trench war in The Royal Theatre, Copenhagen

    Get PDF

    Simultaneous measurements of room-acoustic parameters using different measuring equipment?

    Get PDF

    Carbon Nanotube Films for Energy Applications

    Get PDF
    This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation

    Flexible tactile digital feedback for clinical applications

    Get PDF
    Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures

    Design and development of new tactile softness displays for minimally invasive surgery

    Get PDF
    Despite an influential shortcoming of minimally invasive sugary (MIS), which is the lack of tactile feedback to the surgeon, MIS has increasingly been used in various types of surgeries. Restoring the missing tactile feedback, especially information which can be obtained by the palpation of tissue, such as detection of embedded lump and softness characterization is important in MIS. The present study aims to develop tactile feedback systems both graphically and physically. In graphical rendering approach, the proposed system receives signals from the previously fabricated piezoelectric softness sensors which are integrated with an MIS grasper. After processing the signals, the tactile information is displayed by means of a color coding method. Using the graphical images, the softness of the grasped objects can visually be differentiated. A physical tactile display system is also designed and fabricated. This system simulates non-linear material properties of different soft objects. The system consists of a linear actuator, force and position sensors and processing software. A PID controller is used to control the motion of a linear actuator according to the properties of the simulated material and applied force. Graphical method was also examined to render the tactile information of embedded lumps within a soft tissue/object. The necessary information on the size and location of the hidden features are collected using sensorized MIS graspers. The information is then processed and graphically rendered to the surgeon. Using the proposed system surgeons can identify presence, location and approximate size of hidden lumps by grasping the target object with a reasonable accuracy. Finally, in order to determine the softness of the grasped object, another novel approach is taken by the design and fabrication of a smart endoscopic tool equipped with sensors for measuring the applied force and the angle of the grasper jaws. Using this method, the softness/compliance of the grasped object can be estimated and presented to the surgeo

    NASA Tech Briefs, January 1994

    Get PDF
    Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
    • …
    corecore