2,902 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Waveform Design for Secure SISO Transmissions and Multicasting

    Full text link
    Wireless physical-layer security is an emerging field of research aiming at preventing eavesdropping in an open wireless medium. In this paper, we propose a novel waveform design approach to minimize the likelihood that a message transmitted between trusted single-antenna nodes is intercepted by an eavesdropper. In particular, with knowledge first of the eavesdropper's channel state information (CSI), we find the optimum waveform and transmit energy that minimize the signal-to-interference-plus-noise ratio (SINR) at the output of the eavesdropper's maximum-SINR linear filter, while at the same time provide the intended receiver with a required pre-specified SINR at the output of its own max-SINR filter. Next, if prior knowledge of the eavesdropper's CSI is unavailable, we design a waveform that maximizes the amount of energy available for generating disturbance to eavesdroppers, termed artificial noise (AN), while the SINR of the intended receiver is maintained at the pre-specified level. The extensions of the secure waveform design problem to multiple intended receivers are also investigated and semidefinite relaxation (SDR) -an approximation technique based on convex optimization- is utilized to solve the arising NP-hard design problems. Extensive simulation studies confirm our analytical performance predictions and illustrate the benefits of the designed waveforms on securing single-input single-output (SISO) transmissions and multicasting

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    On Secrecy Metrics for Physical Layer Security over Quasi-Static Fading Channels

    Get PDF
    Theoretical studies on physical layer security often adopt the secrecy outage probability as the performance metric for wireless communications over quasi-static fading channels. The secrecy outage probability has two limitations from a practical point of view: a) it does not give any insight into the eavesdropper's decodability of confidential messages; b) it cannot characterize the amount of information leakage to the eavesdropper when an outage occurs. Motivated by the limitations of the secrecy outage probability, we propose three new secrecy metrics for secure transmissions over quasi-static fading channels. The first metric establishes a link between the concept of secrecy outage and the decodability of messages at the eavesdropper. The second metric provides an error-probability-based secrecy metric which is typically used for the practical implementation of secure wireless systems. The third metric characterizes how much or how fast the confidential information is leaked to the eavesdropper. We show that the proposed secrecy metrics collectively give a more comprehensive understanding of physical layer security over fading channels and enable one to appropriately design secure communication systems with different views on how secrecy is measured.ARC Discovery Projects Grant DP15010390
    • …
    corecore