25,329 research outputs found

    CHARACTERIZATION OF FUNDAMENTAL COMMUNICATION LIMITS OF STATE-DEPENDENT INTERFERENCE NETWORKS

    Get PDF
    Interference management is one of the key techniques that drive evolution of wireless networks from one generation to another. Techniques in current cellular networks to deal with interference follow the basic principle of orthogonalizing transmissions in time, frequency, code, and space. My PhD work investigate information theoretic models that represent a new perspective/technique for interference management. The idea is to explore the fact that an interferer knows the interference that it causes to other users noncausally and can/should exploit such information for canceling the interference. In this way, users can transmit simultaneously and the throughput of wireless networks can be substantially improved. We refer to the interference treated in such a way as ``dirty interference\u27\u27 or noncausal state . Towards designing a dirty interference cancelation framework, my PhD thesis investigates two classes of information theoretic models and develops dirty interference cancelation schemes that achieve the fundamental communication limits. One class of models (referred to as state-dependent interference channels) capture the scenarios that users help each other to cancel dirty interference. The other class of models (referred to as state-dependent channels with helper) capture the scenarios that one dominate user interferes a number of other users and assists those users to cancel its dirty interference. For both classes of models, we develop dirty interference cancelation schemes and compared the corresponding achievable rate regions (i.e., inner bounds on the capacity region) with the outer bounds on the capacity region. We characterize the channel parameters under which the developed inner bounds meet the outer bounds either partially of fully, and thus establish the capacity regions or partial boundaries of the capacity regions

    On Constant Gaps for the Two-way Gaussian Interference Channel

    Full text link
    We introduce the two-way Gaussian interference channel in which there are four nodes with four independent messages: two-messages to be transmitted over a Gaussian interference channel in the \rightarrow direction, simultaneously with two-messages to be transmitted over an interference channel (in-band, full-duplex) in the \leftarrow direction. In such a two-way network, all nodes are transmitters and receivers of messages, allowing them to adapt current channel inputs to previously received channel outputs. We propose two new outer bounds on the symmetric sum-rate for the two-way Gaussian interference channel with complex channel gains: one under full adaptation (all 4 nodes are permitted to adapt inputs to previous outputs), and one under partial adaptation (only 2 nodes are permitted to adapt, the other 2 are restricted). We show that simple non-adaptive schemes such as the Han and Kobayashi scheme, where inputs are functions of messages only and not past outputs, utilized in each direction are sufficient to achieve within a constant gap of these fully or partially adaptive outer bounds for all channel regimes.Comment: presented at 50th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, October 201

    Two-way quantum communication channels

    Get PDF
    We consider communication between two parties using a bipartite quantum operation, which constitutes the most general quantum mechanical model of two-party communication. We primarily focus on the simultaneous forward and backward communication of classical messages. For the case in which the two parties share unlimited prior entanglement, we give inner and outer bounds on the achievable rate region that generalize classical results due to Shannon. In particular, using a protocol of Bennett, Harrow, Leung, and Smolin, we give a one-shot expression in terms of the Holevo information for the entanglement-assisted one-way capacity of a two-way quantum channel. As applications, we rederive two known additivity results for one-way channel capacities: the entanglement-assisted capacity of a general one-way channel, and the unassisted capacity of an entanglement-breaking one-way channel.Comment: 21 pages, 3 figure

    Coding Schemes for a Class of Receiver Message Side Information in AWGN Broadcast Channels

    Full text link
    This paper considers the three-receiver AWGN broadcast channel where the receivers (i) have private-message requests and (ii) know some of the messages requested by other receivers as side information. For this setup, all possible side information configurations have been recently classified into eight groups and the capacity of the channel has been established for six groups (Asadi et al., ISIT 2014). We propose inner and outer bounds for the two remaining groups, groups 4 and 7. A distinguishing feature of these two groups is that the weakest receiver knows the requested message of the strongest receiver as side information while the in-between receiver does not. For group 4, the inner and outer bounds coincide at certain regions. For group 7, the inner and outer bounds coincide, thereby establishing the capacity, for four members out of all eight members of the group; for the remaining four members, the proposed bounds reduce the gap between the best known inner and outer bounds.Comment: accepted and to be presented at the 2014 IEEE Information Theory Workshop (ITW

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor
    corecore