7,158 research outputs found

    New opportunities for load balancing in network-wide intrusion detection systems

    Full text link
    As traffic volumes and the types of analysis grow, network intru-sion detection systems (NIDS) face a continuous scaling challenge. Management realities, however, limit NIDS hardware upgrades to occur typically once every 3-5 years. Given that traffic patterns can change dramatically, this leaves a significant scaling challenge in the interim. This motivates the need for practical solutions that can help administrators better utilize and augment their existing NIDS infrastructure. To this end, we design a general architecture for network-wide NIDS deployment that leverages three scaling op-portunities: on-path distribution to split responsibilities, replicat-ing traffic to NIDS clusters, and aggregating intermediate results to split expensive NIDS processing. The challenge here is to balance both the compute load across the network and the total communica-tion cost incurred via replication and aggregation. We implement a backwards-compatible mechanism to enable existing NIDS infras-tructure to leverage these benefits. Using emulated and trace-driven evaluations on several real-world network topologies, we show that our proposal can substantially reduce the maximum computation load, provide better resilience under traffic variability, and offer improved detection coverage

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte
    corecore