10,565 research outputs found

    Mean Field Games models of segregation

    Full text link
    This paper introduces and analyses some models in the framework of Mean Field Games describing interactions between two populations motivated by the studies on urban settlements and residential choice by Thomas Schelling. For static games, a large population limit is proved. For differential games with noise, the existence of solutions is established for the systems of partial differential equations of Mean Field Game theory, in the stationary and in the evolutive case. Numerical methods are proposed, with several simulations. In the examples and in the numerical results, particular emphasis is put on the phenomenon of segregation between the populations.Comment: 35 pages, 10 figure

    Linear-Quadratic NN-person and Mean-Field Games with Ergodic Cost

    Full text link
    We consider stochastic differential games with NN players, linear-Gaussian dynamics in arbitrary state-space dimension, and long-time-average cost with quadratic running cost. Admissible controls are feedbacks for which the system is ergodic. We first study the existence of affine Nash equilibria by means of an associated system of NN Hamilton-Jacobi-Bellman and NN Kolmogorov-Fokker-Planck partial differential equations. We give necessary and sufficient conditions for the existence and uniqueness of quadratic-Gaussian solutions in terms of the solvability of suitable algebraic Riccati and Sylvester equations. Under a symmetry condition on the running costs and for nearly identical players we study the large population limit, NN tending to infinity, and find a unique quadratic-Gaussian solution of the pair of Mean Field Game HJB-KFP equations. Examples of explicit solutions are given, in particular for consensus problems.Comment: 31 page

    On the existence of oscillating solutions in non-monotone Mean-Field Games

    Get PDF
    For non-monotone single and two-populations time-dependent Mean-Field Game systems we obtain the existence of an infinite number of branches of non-trivial solutions. These non-trivial solutions are in particular shown to exhibit an oscillatory behaviour when they are close to the trivial (constant) one. The existence of such branches is derived using local and global bifurcation methods, that rely on the analysis of eigenfunction expansions of solutions to the associated linearized problem. Numerical analysis is performed on two different models to observe the oscillatory behaviour of solutions predicted by bifurcation theory, and to study further properties of branches far away from bifurcation points.Comment: 24 pages, 10 figure
    • …
    corecore