12 research outputs found

    DCT-based video downscaling transcoder using split and merge technique

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    Parallelism and the software-hardware interface in embedded systems

    Get PDF
    This thesis by publications addresses issues in the architecture and microarchitecture of next generation, high performance streaming Systems-on-Chip through quantifying the most important forms of parallelism in current and emerging embedded system workloads. The work consists of three major research tracks, relating to data level parallelism, thread level parallelism and the software-hardware interface which together reflect the research interests of the author as they have been formed in the last nine years. Published works confirm that parallelism at the data level is widely accepted as the most important performance leverage for the efficient execution of embedded media and telecom applications and has been exploited via a number of approaches the most efficient being vectorlSIMD architectures. A further, complementary and substantial form of parallelism exists at the thread level but this has not been researched to the same extent in the context of embedded workloads. For the efficient execution of such applications, exploitation of both forms of parallelism is of paramount importance. This calls for a new architectural approach in the software-hardware interface as its rigidity, manifested in all desktop-based and the majority of embedded CPU's, directly affects the performance ofvectorized, threaded codes. The author advocates a holistic, mature approach where parallelism is extracted via automatic means while at the same time, the traditionally rigid hardware-software interface is optimized to match the temporal and spatial behaviour of the embedded workload. This ultimate goal calls for the precise study of these forms of parallelism for a number of applications executing on theoretical models such as instruction set simulators and parallel RAM machines as well as the development of highly parametric microarchitectural frameworks to encapSUlate that functionality.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Video Quality Pooling Adaptive to Perceptual Distortion Severity

    Full text link

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    Low delay video coding

    Get PDF
    Analogue wireless cameras have been employed for decades, however they have not become an universal solution due to their difficulties of set up and use. The main problem is the link robustness which mainly depends on the requirement of a line-of-sight view between transmitter and receiver, a working condition not always possible. Despite the use of tracking antenna system such as the Portable Intelligent Tracking Antenna (PITA [1]), if strong multipath fading occurs (e.g. obstacles between transmitter and receiver) the picture rapidly falls apart. Digital wireless cameras based on Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes give a valid solution for the above problem. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard has proven to offer excellent performance for the broadcasting of multimedia streams with bit rates over 10 Mbps in difficult terrestrial propagation channels, for fixed and portable applications. However, in typical conditions, the latency needed to compress/decompress a digital video signal at Standard Definition (SD) resolution is of the order of 15 frames, which corresponds to ≃ 0.5 sec. This delay introduces a serious problem when wireless and wired cameras have to be interfaced. Cabled cameras do not use compression, because the cable which directly links transmitter and receiver does not impose restrictive bandwidth constraints. Therefore, the only latency that affects a cable cameras link system is the on cable propagation delay, almost not significant, when switching between wired and wireless cameras, the residual latency makes it impossible to achieve the audio-video synchronization, with consequent disagreeable effects. A way to solve this problem is to provide a low delay digital processing scheme based on a video coding algorithm which avoids massive intermediate data storage. The analysis of the last MPEG based coding standards puts in evidence a series of problems which limits the real performance of a low delay MPEG coding system. The first effort of this work is to study the MPEG standard to understand its limit from both the coding delay and implementation complexity points of views. This thesis also investigates an alternative solution based on HERMES codec, a proprietary algorithm which is described implemented and evaluated. HERMES achieves better results than MPEG in terms of latency and implementation complexity, at the price of higher compression ratios, which means high output bit rates. The use of HERMES codec together with an enhanced OFDM system [2] leads to a competitive solution for wireless digital professional video applications

    Complexity adaptation in video encoders for power limited platforms

    Get PDF
    With the emergence of video services on power limited platforms, it is necessary to consider both performance-centric and constraint-centric signal processing techniques. Traditionally, video applications have a bandwidth or computational resources constraint or both. The recent H.264/AVC video compression standard offers significantly improved efficiency and flexibility compared to previous standards, which leads to less emphasis on bandwidth. However, its high computational complexity is a problem for codecs running on power limited plat- forms. Therefore, a technique that integrates both complexity and bandwidth issues in a single framework should be considered. In this thesis we investigate complexity adaptation of a video coder which focuses on managing computational complexity and provides significant complexity savings when applied to recent standards. It consists of three sub functions specially designed for reducing complexity and a framework for using these sub functions; Variable Block Size (VBS) partitioning, fast motion estimation, skip macroblock detection, and complexity adaptation framework. Firstly, the VBS partitioning algorithm based on the Walsh Hadamard Transform (WHT) is presented. The key idea is to segment regions of an image as edges or flat regions based on the fact that prediction errors are mainly affected by edges. Secondly, a fast motion estimation algorithm called Fast Walsh Boundary Search (FWBS) is presented on the VBS partitioned images. Its results outperform other commonly used fast algorithms. Thirdly, a skip macroblock detection algorithm is proposed for use prior to motion estimation by estimating the Discrete Cosine Transform (DCT) coefficients after quantisation. A new orthogonal transform called the S-transform is presented for predicting Integer DCT coefficients from Walsh Hadamard Transform coefficients. Complexity saving is achieved by deciding which macroblocks need to be processed and which can be skipped without processing. Simulation results show that the proposed algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. Finally, a complexity adaptation framework which combines all three techniques mentioned above is proposed for maximizing the perceptual quality of coded video on a complexity constrained platform

    Novel block-based motion estimation and segmentation for video coding

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Packet prioritizing and delivering for multimedia streaming

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore