241 research outputs found

    Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers.

    Get PDF
    Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.Comment: 10 pages, 8 figures, ISMAR 202

    Jointly structuring triadic spaces of meaning and action:book sharing from 3 months on

    Get PDF
    This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3-12 months. We report that (1) book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2) sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7-9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9-12 months, social book interactions resurfaced, as infants began to effectively integrate object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4-6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    Interaction for Immersive Analytics

    Get PDF
    International audienceIn this chapter, we briefly review the development of natural user interfaces and discuss their role in providing human-computer interaction that is immersive in various ways. Then we examine some opportunities for how these technologies might be used to better support data analysis tasks. Specifically, we review and suggest some interaction design guidelines for immersive analytics. We also review some hardware setups for data visualization that are already archetypal. Finally, we look at some emerging system designs that suggest future directions

    Envisioning social drones in education

    Get PDF
    Education is one of the major application fields in social Human-Robot Interaction. Several forms of social robots have been explored to engage and assist students in the classroom environment, from full-bodied humanoid robots to tabletop robot companions, but flying robots have been left unexplored in this context. In this paper, we present seven online remote workshops conducted with 20 participants to investigate the application area of Education in the Human-Drone Interaction domain; particularly focusing on what roles a social drone could fulfill in a classroom, how it would interact with students, teachers and its environment, what it could look like, and what would specifically differ from other types of social robots used in education. In the workshops we used online collaboration tools, supported by a sketch artist, to help envision a social drone in a classroom. The results revealed several design implications for the roles and capabilities of a social drone, in addition to promising research directions for the development and design in the novel area of drones in education

    Listening-Mode-Centered Sonification Design for Data Exploration

    Get PDF
    Grond F. Listening-Mode-Centered Sonification Design for Data Exploration. Bielefeld: Bielefeld University; 2013.From the Introduction to this thesis: Through the ever growing amount of data and the desire to make them accessible to the user through the sense of listening, sonification, the representation of data by using sound has been subject of active research in the computer sciences and the field of HCI for the last 20 years. During this time, the field of sonification has diversified into different application areas: today, sound in auditory display informs the user about states and actions on the desktop and in mobile devices; sonification has been applied in monitoring applications, where sound can range from being informative to alarming; sonification has been used to give sensory feedback in order to close the action and perception loop; last but not least, sonifications have also been developed for exploratory data analysis, where sound is used to represent data with unknown structures for hypothesis building. Coming from the computer sciences and HCI, the conceptualization of sonification has been mostly driven by application areas. On the other hand, the sonic arts who have always contributed to the community of auditory display have a genuine focus on sound. Despite this close interdisciplinary relation of communities of sound practitioners, a rich and sound- (or listening)-centered concept about sonification is still missing as a point of departure for a more application and task overarching approach towards design guidelines. Complementary to the useful organization along fields of applications, a conceptual framework that is proper to sound needs to abstract from applications and also to some degree from tasks, as both are not directly related to sound. I hence propose in this thesis to conceptualize sonifications along two poles where sound serves either a normative or a descriptive purpose. In the beginning of auditory display research, a continuum between a symbolic and an analogic pole has been proposed by Kramer (1994a, page 21). In this continuum, symbolic stands for sounds that coincide with existing schemas and are more denotative, analogic stands for sounds that are informative through their connotative aspects. (compare Worrall (2009, page 315)). The notions of symbolic and analogic illustrate the struggle to find apt descriptions of how the intention of the listener subjects audible phenomena to a process of meaning making and interpretation. Complementing the analogic-symbolic continuum with descriptive and normative purposes of displays is proposed in the light of the recently increased research interest in listening modes and intentions. Similar to the terms symbolic and analogic, listening modes have been discussed in auditory display since the beginning usually in dichotomic terms which were either identified with the words listening and hearing or understood as musical listening and everyday listening as proposed by Gaver (1993a). More than 25 years earlier, four direct listening modes have been introduced by Schaeffer (1966) together with a 5th synthetic mode of reduced listening which leads to the well-known sound object. Interestingly, Schaeffer’s listening modes remained largely unnoticed by the auditory display community. Particularly the notion of reduced listening goes beyond the connotative and denotative poles of the continuum proposed by Kramer and justifies the new terms descriptive and normative. Recently, a new taxonomy of listening modes has been proposed by Tuuri and Eerola (2012) that is motivated through an embodied cognition approach. The main contribution of their taxonomy is that it convincingly diversifies the connotative and denotative aspects of listening modes. In the recently published sonification handbook, multimodal and interactive aspects in combination with sonification have been discussed as promising options to expand and advance the field by Hunt and Hermann (2011), who point out that there is a big need for a better theoretical foundation in order to systematically integrate these aspects. The main contribution of this thesis is to address this need by providing alternative and complementary design guidelines with respect to existing approaches, all of which have been conceived before the recently increased research interest in listening modes. None of the existing contributions to design frameworks integrates multimodality, and listening modes with a focus on exploratory data analysis, where sonification is conceived to support the understanding of complex data potentially helping to identify new structures therein. In order to structure this field the following questions are addressed in this thesis: • How do natural listening modes and reduced listening relate to the proposed normative and descriptive display purposes? • What is the relationship of multimodality and interaction with listening modes and display purposes? • How can the potential of embodied cognition based listening modes be put to use for exploratory data sonification? • How can listening modes and display purposes be connected to questions of aesthetics in the display? • How do data complexity and Parameter-mapping sonification relate to exploratory data analysis and listening modes

    VRContour: Bringing Contour Delineations of Medical Structures Into Virtual Reality

    Full text link
    Contouring is an indispensable step in Radiotherapy (RT) treatment planning. However, today's contouring software is constrained to only work with a 2D display, which is less intuitive and requires high task loads. Virtual Reality (VR) has shown great potential in various specialties of healthcare and health sciences education due to the unique advantages of intuitive and natural interactions in immersive spaces. VR-based radiation oncology integration has also been advocated as a target healthcare application, allowing providers to directly interact with 3D medical structures. We present VRContour and investigate how to effectively bring contouring for radiation oncology into VR. Through an autobiographical iterative design, we defined three design spaces focused on contouring in VR with the support of a tracked tablet and VR stylus, and investigating dimensionality for information consumption and input (either 2D or 2D + 3D). Through a within-subject study (n = 8), we found that visualizations of 3D medical structures significantly increase precision, and reduce mental load, frustration, as well as overall contouring effort. Participants also agreed with the benefits of using such metaphors for learning purposes.Comment: C. Chen, M. Yarmand, V. Singh, M.V. Sherer, J.D. Murphy, Y. Zhang and N. Weibel, "VRContour: Bringing Contour Delineations of Medical Structures Into Virtual Reality", 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2022, pp. 1-10, doi: 10.1109/ISMAR55827.2022.0002

    Practical, appropriate, empirically-validated guidelines for designing educational games

    Get PDF
    There has recently been a great deal of interest in the potential of computer games to function as innovative educational tools. However, there is very little evidence of games fulfilling that potential. Indeed, the process of merging the disparate goals of education and games design appears problematic, and there are currently no practical guidelines for how to do so in a coherent manner. In this paper, we describe the successful, empirically validated teaching methods developed by behavioural psychologists and point out how they are uniquely suited to take advantage of the benefits that games offer to education. We conclude by proposing some practical steps for designing educational games, based on the techniques of Applied Behaviour Analysis. It is intended that this paper can both focus educational games designers on the features of games that are genuinely useful for education, and also introduce a successful form of teaching that this audience may not yet be familiar with

    Personalized Interaction with High-Resolution Wall Displays

    Get PDF
    Fallende Hardwarepreise sowie eine zunehmende Offenheit gegenüber neuartigen Interaktionsmodalitäten haben in den vergangen Jahren den Einsatz von wandgroßen interaktiven Displays möglich gemacht, und in der Folge ist ihre Anwendung, unter anderem in den Bereichen Visualisierung, Bildung, und der Unterstützung von Meetings, erfolgreich demonstriert worden. Aufgrund ihrer Größe sind Wanddisplays für die Interaktion mit mehreren Benutzern prädestiniert. Gleichzeitig kann angenommen werden, dass Zugang zu persönlichen Daten und Einstellungen — mithin personalisierte Interaktion — weiterhin essentieller Bestandteil der meisten Anwendungsfälle sein wird. Aktuelle Benutzerschnittstellen im Desktop- und Mobilbereich steuern Zugriffe über ein initiales Login. Die Annahme, dass es nur einen Benutzer pro Bildschirm gibt, zieht sich durch das gesamte System, und ermöglicht unter anderem den Zugriff auf persönliche Daten und Kommunikation sowie persönliche Einstellungen. Gibt es hingegen mehrere Benutzer an einem großen Bildschirm, müssen hierfür Alternativen gefunden werden. Die daraus folgende Forschungsfrage dieser Dissertation lautet: Wie können wir im Kontext von Mehrbenutzerinteraktion mit wandgroßen Displays personalisierte Schnittstellen zur Verfügung stellen? Die Dissertation befasst sich sowohl mit personalisierter Interaktion in der Nähe (mit Touch als Eingabemodalität) als auch in etwas weiterer Entfernung (unter Nutzung zusätzlicher mobiler Geräte). Grundlage für personalisierte Mehrbenutzerinteraktion sind technische Lösungen für die Zuordnung von Benutzern zu einzelnen Interaktionen. Hierzu werden zwei Alternativen untersucht: In der ersten werden Nutzer via Kamera verfolgt, und in der zweiten werden Mobilgeräte anhand von Ultraschallsignalen geortet. Darauf aufbauend werden Interaktionstechniken vorgestellt, die personalisierte Interaktion unterstützen. Diese nutzen zusätzliche Mobilgeräte, die den Zugriff auf persönliche Daten sowie Interaktion in einigem Abstand von der Displaywand ermöglichen. Einen weiteren Teil der Arbeit bildet die Untersuchung der praktischen Auswirkungen der Ausgabe- und Interaktionsmodalitäten für personalisierte Interaktion. Hierzu wird eine qualitative Studie vorgestellt, die Nutzerverhalten anhand des kooperativen Mehrbenutzerspiels Miners analysiert. Der abschließende Beitrag beschäftigt sich mit dem Analyseprozess selber: Es wird das Analysetoolkit für Wandinteraktionen GIAnT vorgestellt, das Nutzerbewegungen, Interaktionen, und Blickrichtungen visualisiert und dadurch die Untersuchung der Interaktionen stark vereinfacht.An increasing openness for more diverse interaction modalities as well as falling hardware prices have made very large interactive vertical displays more feasible, and consequently, applications in settings such as visualization, education, and meeting support have been demonstrated successfully. Their size makes wall displays inherently usable for multi-user interaction. At the same time, we can assume that access to personal data and settings, and thus personalized interaction, will still be essential in most use-cases. In most current desktop and mobile user interfaces, access is regulated via an initial login and the complete user interface is then personalized to this user: Access to personal data, configurations and communications all assume a single user per screen. In the case of multiple people using one screen, this is not a feasible solution and we must find alternatives. Therefore, this thesis addresses the research question: How can we provide personalized interfaces in the context of multi-user interaction with wall displays? The scope spans personalized interaction both close to the wall (using touch as input modality) and further away (using mobile devices). Technical solutions that identify users at each interaction can replace logins and enable personalized interaction for multiple users at once. This thesis explores two alternative means of user identification: Tracking using RGB+depth-based cameras and leveraging ultrasound positioning of the users' mobile devices. Building on this, techniques that support personalized interaction using personal mobile devices are proposed. In the first contribution on interaction, HyDAP, we examine pointing from the perspective of moving users, and in the second, SleeD, we propose using an arm-worn device to facilitate access to private data and personalized interface elements. Additionally, the work contributes insights on practical implications of personalized interaction at wall displays: We present a qualitative study that analyses interaction using a multi-user cooperative game as application case, finding awareness and occlusion issues. The final contribution is a corresponding analysis toolkit that visualizes users' movements, touch interactions and gaze points when interacting with wall displays and thus allows fine-grained investigation of the interactions
    • …
    corecore