1,042 research outputs found

    Informed microarchitecture design space exploration using workload dynamics

    Get PDF
    Program runtime characteristics exhibit significant variation. As microprocessor architectures become more complex, their efficiency depends on the capability of adapting with workload dynamics. Moreover, with the approaching billion-transistor microprocessor era, it is not always economical or feasible to design processors with thermal cooling and reliability redundancy capabilities that target an application’s worst case scenario. Therefore, analyzing complex workload dynamics early, at the microarchitecture design stage, is crucial to forecast workload runtime behavior across architecture design alternatives and evaluate the efficiency of workload scenariobased architecture optimizations. Existing methods focus exclusively on predicting aggregated workload behavior. In this paper, we propose accurate and efficient techniques and models to reason about workload dynamics across the microarchitecture design space without using detailed cyclelevel simulations. Our proposed techniques employ waveletbased multiresolution decomposition and neural network based non-linear regression modeling. We extensively evaluate the efficiency of our predictive models in forecasting performance, power and reliability domain workload dynamics that the SPEC CPU 2000 benchmarks manifest on high-performance microprocessors with a microarchitecture design space that consists of 9 key parameters. Our results show that the models achieve high accuracy in revealing workload dynamic behavior across a large microarchitecture design space. We also demonstrate that the proposed techniques can be used to efficiently explore workload scenario-driven architecture optimizations. 1

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above

    Thermal/performance trade-off in network-on-chip architectures

    Get PDF
    Multi-core architectures are a promising paradigm to exploit the huge integration density reached by high-performance systems. Indeed, integration density and technology scaling are causing undesirable operating temperatures, having net impact on reduced reliability and increased cooling costs. Dynamic Thermal Management (DTM) approaches have been proposed in literature to control temperature profile at run-time, while design-time approaches generally provide floorplan-driven solutions to cope with temperature constraints. Nevertheless, a suitable approach to collect performance, thermal and reliability metrics has not been proposed, yet. This work presents a novel methodology to jointly optimize temperature/performance trade-off in reliable high-performance parallel architectures with security constraints achieved by workload physical isolation on each core. The proposed methodology is based on a linear formal model relating temperature and duty-cycle on one side, and performance and duty-cycle on the other side. Extensive experimental results on real-world use-case scenarios show the goodness of the proposed model, suitable for design-time system-wide optimization to be used in conjunction with DTM technique

    Exceeding Conservative Limits: A Consolidated Analysis on Modern Hardware Margins

    Get PDF
    Modern large-scale computing systems (data centers, supercomputers, cloud and edge setups and high-end cyber-physical systems) employ heterogeneous architectures that consist of multicore CPUs, general-purpose many-core GPUs, and programmable FPGAs. The effective utilization of these architectures poses several challenges, among which a primary one is power consumption. Voltage reduction is one of the most efficient methods to reduce power consumption of a chip. With the galloping adoption of hardware accelerators (i.e., GPUs and FPGAs) in large datacenters and other large-scale computing infrastructures, a comprehensive evaluation of the safe voltage reduction levels for each different chip can be employed for efficient reduction of the total power. We present a survey of recent studies in voltage margins reduction at the system level for modern CPUs, GPUs and FPGAs. The pessimistic voltage guardbands inserted by the silicon vendors can be exploited in all devices for significant power savings. On average, voltage reduction can reach 12% in multicore CPUs, 20% in manycore GPUs and 39% in FPGAs.Comment: Accepted for publication in IEEE Transactions on Device and Materials Reliabilit
    • …
    corecore