4,167 research outputs found

    Drawing and Recognizing Chinese Characters with Recurrent Neural Network

    Full text link
    Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters

    Trajectory-based Radical Analysis Network for Online Handwritten Chinese Character Recognition

    Full text link
    Recently, great progress has been made for online handwritten Chinese character recognition due to the emergence of deep learning techniques. However, previous research mostly treated each Chinese character as one class without explicitly considering its inherent structure, namely the radical components with complicated geometry. In this study, we propose a novel trajectory-based radical analysis network (TRAN) to firstly identify radicals and analyze two-dimensional structures among radicals simultaneously, then recognize Chinese characters by generating captions of them based on the analysis of their internal radicals. The proposed TRAN employs recurrent neural networks (RNNs) as both an encoder and a decoder. The RNN encoder makes full use of online information by directly transforming handwriting trajectory into high-level features. The RNN decoder aims at generating the caption by detecting radicals and spatial structures through an attention model. The manner of treating a Chinese character as a two-dimensional composition of radicals can reduce the size of vocabulary and enable TRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen. Evaluated on CASIA-OLHWDB database, the proposed approach significantly outperforms the state-of-the-art whole-character modeling approach with a relative character error rate (CER) reduction of 10%. Meanwhile, for the case of recognition of 500 unseen Chinese characters, TRAN can achieve a character accuracy of about 60% while the traditional whole-character method has no capability to handle them

    Handwritten Chinese Font Generation with Collaborative Stroke Refinement

    Full text link
    Automatic character generation is an appealing solution for new typeface design, especially for Chinese typefaces including over 3700 most commonly-used characters. This task has two main pain points: (i) handwritten characters are usually associated with thin strokes of few information and complex structure which are error prone during deformation; (ii) thousands of characters with various shapes are needed to synthesize based on a few manually designed characters. To solve those issues, we propose a novel convolutional-neural-network-based model with three main techniques: collaborative stroke refinement, using collaborative training strategy to recover the missing or broken strokes; online zoom-augmentation, taking the advantage of the content-reuse phenomenon to reduce the size of training set; and adaptive pre-deformation, standardizing and aligning the characters. The proposed model needs only 750 paired training samples; no pre-trained network, extra dataset resource or labels is needed. Experimental results show that the proposed method significantly outperforms the state-of-the-art methods under the practical restriction on handwritten font synthesis.Comment: 8 pages(exclude reference

    End to End Recognition System for Recognizing Offline Unconstrained Vietnamese Handwriting

    Full text link
    Inspired by recent successes in neural machine translation and image caption generation, we present an attention based encoder decoder model (AED) to recognize Vietnamese Handwritten Text. The model composes of two parts: a DenseNet for extracting invariant features, and a Long Short-Term Memory network (LSTM) with an attention model incorporated for generating output text (LSTM decoder), which are connected from the CNN part to the attention model. The input of the CNN part is a handwritten text image and the target of the LSTM decoder is the corresponding text of the input image. Our model is trained end-to-end to predict the text from a given input image since all the parts are differential components. In the experiment section, we evaluate our proposed AED model on the VNOnDB-Word and VNOnDB-Line datasets to verify its efficiency. The experiential results show that our model achieves 12.30% of word error rate without using any language model. This result is competitive with the handwriting recognition system provided by Google in the Vietnamese Online Handwritten Text Recognition competition

    DenseRAN for Offline Handwritten Chinese Character Recognition

    Full text link
    Recently, great success has been achieved in offline handwritten Chinese character recognition by using deep learning methods. Chinese characters are mainly logographic and consist of basic radicals, however, previous research mostly treated each Chinese character as a whole without explicitly considering its internal two-dimensional structure and radicals. In this study, we propose a novel radical analysis network with densely connected architecture (DenseRAN) to analyze Chinese character radicals and its two-dimensional structures simultaneously. DenseRAN first encodes input image to high-level visual features by employing DenseNet as an encoder. Then a decoder based on recurrent neural networks is employed, aiming at generating captions of Chinese characters by detecting radicals and two-dimensional structures through attention mechanism. The manner of treating a Chinese character as a composition of two-dimensional structures and radicals can reduce the size of vocabulary and enable DenseRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen in training set. Evaluated on ICDAR-2013 competition database, the proposed approach significantly outperforms whole-character modeling approach with a relative character error rate (CER) reduction of 18.54%. Meanwhile, for the case of recognizing 3277 unseen Chinese characters in CASIA-HWDB1.2 database, DenseRAN can achieve a character accuracy of about 41% while the traditional whole-character method has no capability to handle them.Comment: Accepted by ICFHR201

    A New Hybrid-parameter Recurrent Neural Networks for Online Handwritten Chinese Character Recognition

    Full text link
    The recurrent neural network (RNN) is appropriate for dealing with temporal sequences. In this paper, we present a deep RNN with new features and apply it for online handwritten Chinese character recognition. Compared with the existing RNN models, three innovations are involved in the proposed system. First, a new hidden layer function for RNN is proposed for learning temporal information better. we call it Memory Pool Unit (MPU). The proposed MPU has a simple architecture. Second, a new RNN architecture with hybrid parameter is presented, in order to increasing the expression capacity of RNN. The proposed hybrid-parameter RNN has parameter changes when calculating the iteration at temporal dimension. Third, we make a adaptation that all the outputs of each layer are stacked as the output of network. Stacked hidden layer states combine all the hidden layer states for increasing the expression capacity. Experiments are carried out on the IAHCC-UCAS2016 dataset and the CASIA-OLHWDB1.1 dataset. The experimental results show that the hybrid-parameter RNN obtain a better recognition performance with higher efficiency (fewer parameters and faster speed). And the proposed Memory Pool Unit is proved to be a simple hidden layer function and obtains a competitive recognition results

    Few-shot Compositional Font Generation with Dual Memory

    Full text link
    Generating a new font library is a very labor-intensive and time-consuming job for glyph-rich scripts. Despite the remarkable success of existing font generation methods, they have significant drawbacks; they require a large number of reference images to generate a new font set, or they fail to capture detailed styles with only a few samples. In this paper, we focus on compositional scripts, a widely used letter system in the world, where each glyph can be decomposed by several components. By utilizing the compositionality of compositional scripts, we propose a novel font generation framework, named Dual Memory-augmented Font Generation Network (DM-Font), which enables us to generate a high-quality font library with only a few samples. We employ memory components and global-context awareness in the generator to take advantage of the compositionality. In the experiments on Korean-handwriting fonts and Thai-printing fonts, we observe that our method generates a significantly better quality of samples with faithful stylization compared to the state-of-the-art generation methods quantitatively and qualitatively. Source code is available at https://github.com/clovaai/dmfont.Comment: ECCV 2020 camera-read

    Writer-Aware CNN for Parsimonious HMM-Based Offline Handwritten Chinese Text Recognition

    Full text link
    Recently, the hybrid convolutional neural network hidden Markov model (CNN-HMM) has been introduced for offline handwritten Chinese text recognition (HCTR) and has achieved state-of-the-art performance. However, modeling each of the large vocabulary of Chinese characters with a uniform and fixed number of hidden states requires high memory and computational costs and makes the tens of thousands of HMM state classes confusing. Another key issue of CNN-HMM for HCTR is the diversified writing style, which leads to model strain and a significant performance decline for specific writers. To address these issues, we propose a writer-aware CNN based on parsimonious HMM (WCNN-PHMM). First, PHMM is designed using a data-driven state-tying algorithm to greatly reduce the total number of HMM states, which not only yields a compact CNN by state sharing of the same or similar radicals among different Chinese characters but also improves the recognition accuracy due to the more accurate modeling of tied states and the lower confusion among them. Second, WCNN integrates each convolutional layer with one adaptive layer fed by a writer-dependent vector, namely, the writer code, to extract the irrelevant variability in writer information to improve recognition performance. The parameters of writer-adaptive layers are jointly optimized with other network parameters in the training stage, while a multiple-pass decoding strategy is adopted to learn the writer code and generate recognition results. Validated on the ICDAR 2013 competition of CASIA-HWDB database, the more compact WCNN-PHMM of a 7360-class vocabulary can achieve a relative character error rate (CER) reduction of 16.6% over the conventional CNN-HMM without considering language modeling. By adopting a powerful hybrid language model (N-gram language model and recurrent neural network language model), the CER of WCNN-PHMM is reduced to 3.17%

    Adversarial Generation of Handwritten Text Images Conditioned on Sequences

    Full text link
    State-of-the-art offline handwriting text recognition systems tend to use neural networks and therefore require a large amount of annotated data to be trained. In order to partially satisfy this requirement, we propose a system based on Generative Adversarial Networks (GAN) to produce synthetic images of handwritten words. We use bidirectional LSTM recurrent layers to get an embedding of the word to be rendered, and we feed it to the generator network. We also modify the standard GAN by adding an auxiliary network for text recognition. The system is then trained with a balanced combination of an adversarial loss and a CTC loss. Together, these extensions to GAN enable to control the textual content of the generated word images. We obtain realistic images on both French and Arabic datasets, and we show that integrating these synthetic images into the existing training data of a text recognition system can slightly enhance its performance

    Handwritten Bangla Basic and Compound character recognition using MLP and SVM classifier

    Full text link
    A novel approach for recognition of handwritten compound Bangla characters, along with the Basic characters of Bangla alphabet, is presented here. Compared to English like Roman script, one of the major stumbling blocks in Optical Character Recognition (OCR) of handwritten Bangla script is the large number of complex shaped character classes of Bangla alphabet. In addition to 50 basic character classes, there are nearly 160 complex shaped compound character classes in Bangla alphabet. Dealing with such a large varieties of handwritten characters with a suitably designed feature set is a challenging problem. Uncertainty and imprecision are inherent in handwritten script. Moreover, such a large varieties of complex shaped characters, some of which have close resemblance, makes the problem of OCR of handwritten Bangla characters more difficult. Considering the complexity of the problem, the present approach makes an attempt to identify compound character classes from most frequently to less frequently occurred ones, i.e., in order of importance. This is to develop a frame work for incrementally increasing the number of learned classes of compound characters from more frequently occurred ones to less frequently occurred ones along with Basic characters. On experimentation, the technique is observed produce an average recognition rate of 79.25 after three fold cross validation of data with future scope of improvement and extension
    corecore