1,170 research outputs found

    Organizing sustainable development

    Get PDF
    The role and meaning of sustainable development have been recognized in the scientific literature for decades. However, there has recently been a dynamic increase in interest in the subject, which results in numerous, in-depth scientific research and publications with an interdisciplinary dimension. This edited volume is a compendium of theoretical knowledge on sustainable development. The context analysed in the publication includes a multi-level and multi-aspect analysis starting from the historical and legal conditions, through elements of the macro level and the micro level, inside the organization. Organizing Sustainable Development offers a systematic and comprehensive theoretical analysis of sustainable development supplemented with practical examples, which will allow obtaining comprehensive knowledge about the meaning and its multi-context application in practice. It shows the latest state of knowledge on the topic and will be of interest to students at an advanced level, academics and reflective practitioners in the fields of sustainable development, management studies, organizational studies and corporate social responsibility

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Optimization for Energy Management in the Community Microgrids

    Full text link
    This thesis focuses on improving the energy management strategies for Community Microgrids (CMGs), which are expected to play a crucial role in the future smart grid. CMGs bring many benefits, including increased use of renewable energy, improved reliability, resiliency, and energy efficiency. An Energy Management System (EMS) is a key tool that helps in monitoring, controlling, and optimizing the operations of the CMG in a cost-effective manner. The EMS can include various functionalities like day-ahead generation scheduling, real-time scheduling, uncertainty management, and demand response programs. Generation scheduling in a microgrid is a challenging optimization problem, especially due to the intermittent nature of renewable energy. The power balance constraint, which is the balance between energy demand and generation, is difficult to satisfy due to prediction errors in energy demand and generation. Real-time scheduling, which is based on a shorter prediction horizon, reduces these errors, but the impact of uncertainties cannot be completely eliminated. In regards to demand response programs, it is challenging to design an effective model that motivates customers to voluntarily participate while benefiting the system operator. Mathematical optimization techniques have been widely used to solve power system problems, but their application is limited by the need for specific mathematical properties. Metaheuristic techniques, particularly Evolutionary Algorithms (EAs), have gained popularity for their ability to solve complex and non-linear problems. However, the traditional form of EAs may require significant computational effort for complex energy management problems in the CMG. This thesis aims to enhance the existing methods of EMS in CMGs. Improved techniques are developed for day-ahead generation scheduling, multi-stage real-time scheduling, and demand response implementation. For generation scheduling, the performance of conventional EAs is improved through an efficient heuristic. A new multi-stage scheduling framework is proposed to minimize the impact of uncertainties in real-time operations. In regards to demand response, a memetic algorithm is proposed to solve an incentive-based scheme from the perspective of an aggregator, and a price-based demand response driven by dynamic price optimization is proposed to enhance the electric vehicle hosting capacity. The proposed methods are validated through extensive numerical experiments and comparison with state-of-the-art approaches. The results confirm the effectiveness of the proposed methods in improving energy management in CMGs

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Building Energy Modeling and Studies of Electric Power Distribution Systems with Distributed Energy Resources

    Get PDF
    There is significant opportunity for savings in energy and investment from improved performance of electric Power Distribution Systems (PDSs) through optimal planning and operation of conventional voltage-controlling devices. Novel multi-step model conversion and optimal capacitor planning (OCP) procedures are proposed for large-scale utility PDSs and are exemplified with an existing utility circuit of approximately 4,000 buses. Simulated optimal control and operation is achieved with a cluster-based approach that utilizes load-forecasting to minimize equipment degradation by intelligently dispersing device setting adjustments over time such that they remain most applicable. Improved performance may also be achieved through smart building technologies and Virtual Power Plant (VPP) control of increasingly more prevalent Distributed Energy Resources (DERs). The established simulation test bed for PDSs incorporates DERs to evaluate VPP implementations and an optimization process for control timing is proposed that minimizes targeted peak power and possible resulting increase in total daily energy. The advanced VPP controls incorporate the Consumer Technology Association (CTA) 2045 standard and EnergyStar performance characterizations to leverage HVAC systems as Generalized Energy Storage (GES) for load manipulation and to support the integration of demand-side generating DERs, such as local solar Photo-Voltaic (PV) systems

    Proceedings of the 2nd 4TU/14UAS Research Day on Digitalization of the Built Environment

    Get PDF

    2022 comprehensive permanent improvement plan for the plan years 2023-2027 statewide

    Get PDF
    This planning document tells the costs and funding sources for capital improvements of state agencies for the plan years 2023-2027. Each agency has a summary of proposed permanent improvement projects including funding source, functional group and business area
    corecore