7,680 research outputs found

    Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental findings and applications

    Full text link
    Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. In particular, the common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in the last decades; for example, wireless communications, radar and sonar, biomedicine, image processing, and seismology, just to name a few. Developing an estimation algorithm often begins by assuming a statistical model for the measured data, i.e. a probability density function (pdf) which if correct, fully characterizes the behaviour of the collected data/measurements. Experience with real data, however, often exposes the limitations of any assumed data model since modelling errors at some level are always present. Consequently, the true data model and the model assumed to derive the estimation algorithm could differ. When this happens, the model is said to be mismatched or misspecified. Therefore, understanding the possible performance loss or regret that an estimation algorithm could experience under model misspecification is of crucial importance for any SP practitioner. Further, understanding the limits on the performance of any estimator subject to model misspecification is of practical interest. Motivated by the widespread and practical need to assess the performance of a mismatched estimator, the goal of this paper is to help to bring attention to the main theoretical findings on estimation theory, and in particular on lower bounds under model misspecification, that have been published in the statistical and econometrical literature in the last fifty years. Secondly, some applications are discussed to illustrate the broad range of areas and problems to which this framework extends, and consequently the numerous opportunities available for SP researchers.Comment: To appear in the IEEE Signal Processing Magazin

    Computing the Cramer-Rao bound of Markov random field parameters: Application to the Ising and the Potts models

    Get PDF
    This report considers the problem of computing the Cramer-Rao bound for the parameters of a Markov random field. Computation of the exact bound is not feasible for most fields of interest because their likelihoods are intractable and have intractable derivatives. We show here how it is possible to formulate the computation of the bound as a statistical inference problem that can be solve approximately, but with arbitrarily high accuracy, by using a Monte Carlo method. The proposed methodology is successfully applied on the Ising and the Potts models.% where it is used to assess the performance of three state-of-the art estimators of the parameter of these Markov random fields

    Variational Bayes with Intractable Likelihood

    Full text link
    Variational Bayes (VB) is rapidly becoming a popular tool for Bayesian inference in statistical modeling. However, the existing VB algorithms are restricted to cases where the likelihood is tractable, which precludes the use of VB in many interesting situations such as in state space models and in approximate Bayesian computation (ABC), where application of VB methods was previously impossible. This paper extends the scope of application of VB to cases where the likelihood is intractable, but can be estimated unbiasedly. The proposed VB method therefore makes it possible to carry out Bayesian inference in many statistical applications, including state space models and ABC. The method is generic in the sense that it can be applied to almost all statistical models without requiring too much model-based derivation, which is a drawback of many existing VB algorithms. We also show how the proposed method can be used to obtain highly accurate VB approximations of marginal posterior distributions.Comment: 40 pages, 6 figure

    Statistical inference in compound functional models

    Get PDF
    We consider a general nonparametric regression model called the compound model. It includes, as special cases, sparse additive regression and nonparametric (or linear) regression with many covariates but possibly a small number of relevant covariates. The compound model is characterized by three main parameters: the structure parameter describing the "macroscopic" form of the compound function, the "microscopic" sparsity parameter indicating the maximal number of relevant covariates in each component and the usual smoothness parameter corresponding to the complexity of the members of the compound. We find non-asymptotic minimax rate of convergence of estimators in such a model as a function of these three parameters. We also show that this rate can be attained in an adaptive way
    corecore