114,970 research outputs found

    Exploring complex networks via topological embedding on surfaces

    Full text link
    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, characterize and simulate networks with a broad range of properties. Remarkably, the study of topologically embedded graphs is non-restrictive because any network can be embedded on a surface with sufficiently high genus. The local properties of the network are affected by the surface genus which, for example, produces significant changes in the degree distribution and in the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwoveness, changing the scaling properties from large-world-kind (small genus) to small- and ultra-small-world-kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description. Within such a framework, we study the properties of topologically-embedded graphs at high and low `temperatures' observing the formation of increasingly regular structures by cooling the system. We show that the cooling dynamics is strongly affected by the surface genus with the manifestation of a glassy-like freezing transitions occurring when the amount of topological disorder is low.Comment: 18 pages, 7 figure

    Diameter and Treewidth in Minor-Closed Graph Families

    Full text link
    It is known that any planar graph with diameter D has treewidth O(D), and this fact has been used as the basis for several planar graph algorithms. We investigate the extent to which similar relations hold in other graph families. We show that treewidth is bounded by a function of the diameter in a minor-closed family, if and only if some apex graph does not belong to the family. In particular, the O(D) bound above can be extended to bounded-genus graphs. As a consequence, we extend several approximation algorithms and exact subgraph isomorphism algorithms from planar graphs to other graph families.Comment: 15 pages, 12 figure

    Complex Networks

    Full text link
    An outline of recent work on complex networks is given from the point of view of a physicist. Motivation, achievements and goals are discussed with some of the typical applications from a wide range of academic fields. An introduction to the relevant literature and useful resources is also given.Comment: Review for Contemporary Physics, 31 page

    The degree/diameter problem in maximal planar bipartite graphs

    Get PDF
    The (Δ,D)(Δ,D) (degree/diameter) problem consists of finding the largest possible number of vertices nn among all the graphs with maximum degree ΔΔ and diameter DD. We consider the (Δ,D)(Δ,D) problem for maximal planar bipartite graphs, that is, simple planar graphs in which every face is a quadrangle. We obtain that for the (Δ,2)(Δ,2) problem, the number of vertices is n=Δ+2n=Δ+2; and for the (Δ,3)(Δ,3) problem, n=3Δ−1n=3Δ−1 if ΔΔ is odd and n=3Δ−2n=3Δ−2 if ΔΔ is even. Then, we prove that, for the general case of the (Δ,D)(Δ,D) problem, an upper bound on nn is approximately 3(2D+1)(Δ−2)⌊D/2⌋3(2D+1)(Δ−2)⌊D/2⌋, and another one is C(Δ−2)⌊D/2⌋C(Δ−2)⌊D/2⌋ if Δ≥DΔ≥D and CC is a sufficiently large constant. Our upper bounds improve for our kind of graphs the one given by Fellows, Hell and Seyffarth for general planar graphs. We also give a lower bound on nn for maximal planar bipartite graphs, which is approximately (Δ−2)k(Δ−2)k if D=2kD=2k, and 3(Δ−3)k3(Δ−3)k if D=2k+1D=2k+1, for ΔΔ and DD sufficiently large in both cases.Peer ReviewedPostprint (published version

    A family of mixed graphs with large order and diameter 2

    Get PDF
    A mixed regular graph is a connected simple graph in which each vertex has both a fixed outdegree (the same indegree) and a fixed undirected degree. A mixed regular graphs is said to be optimal if there is not a mixed regular graph with the same parameters and bigger order. We present a construction that provides mixed graphs of undirected degree qq, directed degree View the MathML sourceq-12 and order 2q22q2, for qq being an odd prime power. Since the Moore bound for a mixed graph with these parameters is equal to View the MathML source9q2-4q+34 the defect of these mixed graphs is View the MathML source(q-22)2-14. In particular we obtain a known mixed Moore graph of order 1818, undirected degree 33 and directed degree 11 called Bosák’s graph and a new mixed graph of order 5050, undirected degree 55 and directed degree 22, which is proved to be optimal.Peer ReviewedPostprint (author's final draft
    • …
    corecore