290 research outputs found

    Interference and Throughput in Aloha-based Ad Hoc Networks with Isotropic Node Distribution

    Full text link
    We study the interference and outage statistics in a slotted Aloha ad hoc network, where the spatial distribution of nodes is non-stationary and isotropic. In such a network, outage probability and local throughput depend on both the particular location in the network and the shape of the spatial distribution. We derive in closed-form certain distributional properties of the interference that are important for analyzing wireless networks as a function of the location and the spatial shape. Our results focus on path loss exponents 2 and 4, the former case not being analyzable before due to the stationarity assumption of the spatial node distribution. We propose two metrics for measuring local throughput in non-stationary networks and discuss how our findings can be applied to both analysis and optimization.Comment: 5 pages, 3 figures. To appear in International Symposium on Information Theory (ISIT) 201

    Interference in Poisson Networks with Isotropically Distributed Nodes

    Full text link
    Practical wireless networks are finite, and hence non-stationary with nodes typically non-homo-geneously deployed over the area. This leads to a location-dependent performance and to boundary effects which are both often neglected in network modeling. In this work, interference in networks with nodes distributed according to an isotropic but not necessarily stationary Poisson point process (PPP) are studied. The resulting link performance is precisely characterized as a function of (i) an arbitrary receiver location and of (ii) an arbitrary isotropic shape of the spatial distribution. Closed-form expressions for the first moment and the Laplace transform of the interference are derived for the path loss exponents α=2\alpha=2 and α=4\alpha=4, and simple bounds are derived for other cases. The developed model is applied to practical problems in network analysis: for instance, the accuracy loss due to neglecting border effects is shown to be undesirably high within transition regions of certain deployment scenarios. Using a throughput metric not relying on the stationarity of the spatial node distribution, the spatial throughput locally around a given node is characterized.Comment: This work was presented in part at ISIT 201
    • …
    corecore