223 research outputs found

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP

    Overview on: sequencing in mixed model flowshop production line with static and dynamic context

    Get PDF
    In the present work a literature overview was given on solution techniques considering basic as well as more advanced and consequently more complex arrangements of mixed model flowshops. We first analyzed the occurrence of setup time/cost; existing solution techniques are mainly focused on permutation sequences. Thereafter we discussed objectives resulting in the introduction of variety of methods allowing resequencing of jobs within the line. The possibility of resequencing within the line ranges from 1) offline or intermittent buffers, 2) parallel stations, namely flexible, hybrid or compound flowshops, 3) merging and splitting of parallel lines, 4) re-entrant flowshops, to 5) change job attributes without physically interchanging the position. In continuation the differences in the consideration of static and dynamic demand was studied. Also intermittent setups are possible, depending on the horizon and including the possibility of resequencing, four problem cases were highlighted: static, semi dynamic, nearly dynamic and dynamic case. Finally a general overview was given on existing solution methods, including exact and approximation methods. The approximation methods are furthermore divided in two cases, know as heuristics and methaheuristic

    An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems

    Full text link
    [EN] The mixed no-wait flowshop problem with both wait and no-wait constraints has many potential real-life applications. The problem can be regarded as a generalization of the traditional permutation flowshop and the no-wait flowshop. In this paper, we study, for the first time, this scheduling setting with makespan minimization. We first propose a mathematical model and then we design a speed-up makespan calculation procedure. By introducing a varying number of destructed jobs, a modified iterated greedy algorithm is proposed for the considered problem which consists of four components: 1) initialization solution construction; 2) destruction; 3) reconstruction; and 4) local search. To further improve the intensification and efficiency of the proposal, insertion is performed on some neighbor jobs of the best position in a sequence during the initialization, solution construction, and reconstruction phases. After calibrating parameters and components, the proposal is compared with five existing algorithms for similar problems on adapted Taillard benchmark instances. Experimental results show that the proposal always obtains the best performance among the compared methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61572127 and 61272377, in part by the Key Research and Development Program in Jiangsu Province under Grant BE2015728, and in part by the Collaborative Innovation Center of Wireless Communications Technology. The work of R. Ruiz was supported in part by the Spanish Ministry of Economy and Competitiveness through the project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" under Grant DPI2015-65895-R, and in part by the FEDER Funds.Wang, Y.; Li, X.; Ruiz García, R.; Sui, S. (2018). An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems. IEEE Transactions on Cybernetics. 48(5):1553-1566. https://doi.org/10.1109/TCYB.2017.2707067S1553156648

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects

    Full text link
    [EN] This paper addresses a sequence dependent setup times no-wait flowshop with learning and forgetting effects to minimize total flowtime. This problem is NP-hard and has never been considered before. A position-based learning and forgetting effects model is constructed. Processing times of operations change with the positions of corresponding jobs in a schedule. Objective increment properties are deduced and based on them three accelerated neighbourhood construction heuristics are presented. Because of the simplicity and excellent performance shown in flowshop scheduling problems, an iterated greedy heuristic is proposed. The proposed iterated greedy algorithm is compared with some existing algorithms for related problems on benchmark instances. Comprehensive computational and statistical tests show that the presented method obtains the best performance among the compared methods. (C) 2018 Elsevier Inc. All rights reserved.This work is supported by the National Natural Science Foundation of China (Nos. 61572127, 61272377), the Collaborative Innovation Center of Wireless Communications Technology and the Key Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 12KJA630001). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness(MINECO), under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" with reference DPI2015-65895-R.Li, X.; Yang, Z.; Ruiz García, R.; Chen, T.; Sui, S. (2018). An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects. Information Sciences. 453:408-425. https://doi.org/10.1016/j.ins.2018.04.038S40842545

    An estimation of distribution algorithm for lot-streaming flow shop problems with setup times

    Full text link
    Lot-streaming flow shops have important applications in different industries including textile, plastic, chemical, semiconductor and many others. This paper considers an n-job m-machine lot-streaming flow shop scheduling problem with sequence-dependent setup times under both the idling and noidling production cases. The objective is to minimize the maximum completion time or makespan. To solve this important practical problem, a novel estimation of distribution algorithm (EDA) is proposed with a job permutation based representation. In the proposed EDA, an efficient initialization scheme based on the NEH heuristic is presented to construct an initial population with a certain level of quality and diversity. An estimation of a probabilistic model is constructed to direct the algorithm search towards good solutions by taking into account both job permutation and similar blocks of jobs. A simple but effective local search is added to enhance the intensification capability. A diversity controlling mechanism is applied to maintain the diversity of the population. In addition, a speed-up method is presented to reduce the computational effort needed for the local search technique and the NEH-based heuristics. A comparative evaluation is carried out with the best performing algorithms from the literature. The results show that the proposed EDA is very effective in comparison after comprehensive computational and statistical analyses.This research is partially supported by the National Science Foundation of China (60874075, 70871065), and Science Foundation of Shandong Province in China under Grant BS2010DX005, and Postdoctoral Science Foundation of China under Grant 20100480897. Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI and by the IMPIVA-Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175.Pan, Q.; Ruiz García, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega. 40(2):166-180. https://doi.org/10.1016/j.omega.2011.05.002S16618040

    Minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers

    Get PDF
    This research addresses the problem of minimizing the makespan in a flexible flowshop with sequence dependent setup times, uniform machines, and limited buffers. A mathematical model was developed to solve this problem. The problem is NP-Hard in the strong sense and only very small problems could be solved optimally. For exact methods, the computation times are long and not practical even when the problems are relatively small. Two construction heuristics were developed that could find solutions quickly. Also a simulated annealing heuristic was constructed that improved the solutions obtained from the construction heuristics. The combined heuristics could compute a good solution in a short amount of time. The heuristics were tested in three different environments: 3 stages, 4 stages, and 5 stages. To assess the quality of the solutions, a lower bound and two simple heuristics were generated for comparison purposes. The proposed heuristics showed steady improvement over the simple heuristics. When compared to the lower bounds, the heuristics performed well for the smaller environment, but the performance quality decreased as the number of stages increased. The combination of these heuristics defiantly shows promise for solving the problem

    Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective

    Get PDF
    In this paper we address the classical hybrid flow shop scheduling problem with makespan objective. As this problem is known to be NP-hard and a very common layout in real-life manufacturing scenarios, many studies have been proposed in the literature to solve it. These contributions use different solution representations of the feasible schedules, each one with its own advantages and disadvantages. Some of them do not guarantee that all feasible semiactive schedules are represented in the space of solutions –thus limiting in principle their effectiveness– but, on the other hand, these simpler solution representations possess clear advantages in terms of having consistent neighbourhoods with well-defined neighbourhood moves. Therefore, there is a trade-off between the solution space reduction and the ability to conduct an efficient search in this reduced solution space. This trade-off is determined by two aspects, i.e. the extent of the solution space reduction, and the quality of the schedules left aside by this solution space reduction. In this paper, we analyse the efficiency of the different solution representations employed in the literature for the problem. More specifically, we first establish the size of the space of semiactive schedules achieved by the different solution representations and, secondly, we address the issue of the quality of the schedules that can be achieved by these representations using the optimal solutions given by several MILP models and complete enumeration. The results obtained may contribute to design more efficient algorithms for the hybrid flow shop scheduling problem.Ministerio de Ciencia e Innovación DPI2016-80750-

    Extended classification for flowshops with resequencing

    Get PDF
    Este trabajo presenta una clasificación extendida de líneas de flujo no-permutación. Se consideran las múltiples opciones que se presentan al incluir la posibilidad de resecuenciar piezas en la línea. Se ha visto que en la literatura actual no se ha clasificado con profundidad este tipo de producción. Abstract This paper presents an extended cassification for non-permutation flowshops. The versatile options which occur with the possibility of resequencing jobs within the line are considered. The literature review shows that no classification exists which considers extensively this type of flowshop
    corecore