307 research outputs found

    Video post processing architectures

    Get PDF

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Energy-efficient acceleration of MPEG-4 compression tools

    Get PDF
    We propose novel hardware accelerator architectures for the most computationally demanding algorithms of the MPEG-4 video compression standard-motion estimation, binary motion estimation (for shape coding), and the forward/inverse discrete cosine transforms (incorporating shape adaptive modes). These accelerators have been designed using general low-energy design philosophies at the algorithmic/architectural abstraction levels. The themes of these philosophies are avoiding waste and trading area/performance for power and energy gains. Each core has been synthesised targeting TSMC 0.09 μm TCBN90LP technology, and the experimental results presented in this paper show that the proposed cores improve upon the prior art

    Development of PVDF tactile dynamic sensing in a behaviour-based assembly robot

    Get PDF
    The research presented in this thesis focuses on the development of tactile event sig¬ nature sensors and their application, especially in reactive behaviour-based robotic assembly systems.In pursuit of practical and economic sensors for detecting part contact, the application ofPVDF (polyvinylidene fluoride) film, a mechanical vibration sensitive piezo material, is investigated. A Clunk Sensor is developed which remotely detects impact vibrations, and a Push Sensor is developed which senses small changes in the deformation of a compliant finger surface. The Push Sensor is further developed to provide some force direction and force pattern sensing capability.By being able to detect changes of state in an assembly, such as a change of contact force, an assembly robot can be well informed of current conditions. The complex structure of assembly tasks provides a rich context within which to interpret changes of state, so simple binary sensors can conveniently supply a lot more information than in the domain of mobile robots. Guarded motions, for example, which require sensing a change of state, have long been recognised as very useful in part mating tasks. Guarded motions are particularly well suited to be components of assembly behavioural modules.In behaviour-based robotic assembly systems, the high level planner is endowed with as little complexity as possible while the low level planning execution agent deals with actual sensing and action. Highly reactive execution agents can provide advantages by encapsulating low level sensing and action, hiding the details of sensori-motor complexity from the higher levels.Because behaviour-based assembly systems emphasise the utility of this kind of quali¬ tative state-change sensor (as opposed to sensors which measure physical quantities), the robustness and utility of the Push Sensor was tested in an experimental behaviourbased system. An experimental task of pushing a ring along a convoluted stiff wire is chosen, in which the tactile sensors developed here are aided by vision. Three differ¬ ent methods of combining these different sensors within the general behaviour-based paradigm are implemented and compared. This exercise confirms the robustness and utility of the PVDF-based tactile sensors. We argue that the comparison suggests that for behaviour-based assembly systems using multiple concurrent sensor systems, bottom-level motor control in terms of force or velocity would be more appropriate than positional control. Behaviour-based systems have traditionally tried to avoid symbolic knowledge. Considering this in the light of the above work, it was found useful to develop a taxonomy of type of knowledge and refine the prohibition

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    Fast motion estimation algorithm in H.264 standard

    Get PDF
    In H.264/AVC standard, the block motion estimation pattern is used to estimate the motion which is a very time consuming part. Although many fast algorithms have been proposed to reduce the huge calculation, the motion estimation time still cannot achieve the critical real time application. So to develop an algorithm which will be fast and having low complexity became a challenge in this standard.For this reasons, a lot of block motion estimation algorithms have been proposed. Typically the block motion estimation part is categorized into two parts. (1) Single pixel motion estimation (2) Fractional pixel motion estimation. In single pixel motion estimation one kind of fast motion algorithm uses fixed pattern like Three Step search, 2-D Logarithmic Search. Four Step search,Diamond Search, Hexagon Based Search. These algorithms are able to reduce the search point and get good coding quality. But the coding quality decreases when the fixed pattern does not fit the real life video sequence. In this thesis we tried to reduce the time complexity and number of search point by using an early termination method which is called adaptive threshold selection. We have used this method in three step search (TSS) and four step search and compared the performance with already existing block matching algorithm.This thesis work proposes fast sub-pixel motion estimation techniques having lower computational complexity. The proposed methods are based on mathematical models of the motion compensated prediction errors in compressing moving pictures. Unlike conventional hierarchical motion estimation techniques, the proposed methods avoid sub-pixel interpolation and subsequent secondary search after the integer-precision motion estimation, resulting in reduced computational time. In order to decide the coefficients of the models, the motion-compensated prediction errors of the neighboring pixels around the integer-pixel motion vector are utilized
    corecore