1,151 research outputs found

    Small Strong Epsilon Nets

    Full text link
    Let P be a set of n points in Rd\mathbb{R}^d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dnd+1dn\over d+1 points of P. We call a point x a strong centerpoint for a family of objects C\mathcal{C} if xPx \in P is contained in every object CCC \in \mathcal{C} that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R2\mathbb{R}^2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd\mathbb{R}^d and give exact bounds. We then extend this to small strong ϵ\epsilon-nets in the plane and prove upper and lower bounds for ϵiS\epsilon_i^\mathcal{S} where S\mathcal{S} is the family of axis-parallel rectangles, halfspaces and disks. Here ϵiS\epsilon_i^\mathcal{S} represents the smallest real number in [0,1][0,1] such that there exists an ϵiS\epsilon_i^\mathcal{S}-net of size i with respect to S\mathcal{S}.Comment: 19 pages, 12 figure

    On Strong Centerpoints

    Full text link
    Let PP be a set of nn points in Rd\mathbb{R}^d and F\mathcal{F} be a family of geometric objects. We call a point xPx \in P a strong centerpoint of PP w.r.t F\mathcal{F} if xx is contained in all FFF \in \mathcal{F} that contains more than cncn points from PP, where cc is a fixed constant. A strong centerpoint does not exist even when F\mathcal{F} is the family of halfspaces in the plane. We prove the existence of strong centerpoints with exact constants for convex polytopes defined by a fixed set of orientations. We also prove the existence of strong centerpoints for abstract set systems with bounded intersection

    On the mathematical and foundational significance of the uncountable

    Full text link
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindel\"of lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindel\"of property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [0,1][0,1] as 'almost finite', while the latter allows one to treat uncountable sets like e.g. R\mathbb{R} as 'almost countable'. This reduction of the uncountable to the finite/countable turns out to have a considerable logical and computational cost: we show that the aforementioned lemmas, and many related theorems, are extremely hard to prove, while the associated sub-covers are extremely hard to compute. Indeed, in terms of the standard scale (based on comprehension axioms), a proof of these lemmas requires at least the full extent of second-order arithmetic, a system originating from Hilbert-Bernays' Grundlagen der Mathematik. This observation has far-reaching implications for the Grundlagen's spiritual successor, the program of Reverse Mathematics, and the associated G\"odel hierachy. We also show that the Cousin lemma is essential for the development of the gauge integral, a generalisation of the Lebesgue and improper Riemann integrals that also uniquely provides a direct formalisation of Feynman's path integral.Comment: 35 pages with one figure. The content of this version extends the published version in that Sections 3.3.4 and 3.4 below are new. Small corrections/additions have also been made to reflect new development
    corecore