35 research outputs found

    Genetic algorithm for integrated model of berth allocation problem and quay crane scheduling with noncrossing safety and distance constraint

    Get PDF
    Berth Allocation and Quay Crane Scheduling are the most important part of container terminal operations since berth and quay cranes are an interface of ocean-side and landside in any port container terminal operation. Their operations significantly influence the efficiency of port container terminals and need to be solved simultaneously. Based on the situation, this study focuses on an integrated model of Continuous Berth Allocation Problem and Quay Crane Scheduling Problem. A comprehensive analysis of safety distance for vessel and non-crossing constraint for quay crane is provided. There are two integrated model involved. For the first integrated model, non-crossing constraints are added wherein quay cranes cannot cross over each other since they are on the same track. The second integrated model is focused on the safety distance between vessels while berthing at the terminal and at the same time, quay crane remains not to cross each other. These two constraints were selected to ensure a realistic model based on the real situation at the port. The objective of this model is to minimise the processing time of vessels. A vessel's processing time is measured between arrival and departure including the waiting time to be berthed and servicing time. A new algorithm is developed to obtain the good solution. Genetic Algorithm is chosen as a method based on flexibility and can apply to any problems. There are three layers of algorithm that provide a wider search to the solution space for vessel list, berth list, and hold list developed in this study. The new Genetic Algorithm produced a better solution than the previous research, where the objective function decreases 5 to 12 percent. Numerical experiments were conducted and the results show that both integrated models are able to minimize the processing time of vessels and can solve problem quickly even involving a large number of vessels. Studies have found that the safety distance set as 5 percent of vessel length gives the best solution. By adding safety distance to the integrated model with non-crossing constraint, the result indicates no improvement in the model objective function due to increasing distance between vessels. The objective function increases in the range of 0.4 to 8.6 percent. However, the safety distance constraint is important for safety and realistic model based on the port’s real situation

    The berth allocation problem at port terminals : a column generation framework

    Get PDF
    Le problème d'allocation de postes d'amarrage (PAPA) est l'un des principaux problèmes de décision aux terminaux portuaires qui a été largement étudié. Dans des recherches antérieures, le PAPA a été reformulé comme étant un problème de partitionnement généralisé (PPG) et résolu en utilisant un solveur standard. Les affectations (colonnes) ont été générées a priori de manière statique et fournies comme entrée au modèle %d'optimisation. Cette méthode est capable de fournir une solution optimale au problème pour des instances de tailles moyennes. Cependant, son inconvénient principal est l'explosion du nombre d'affectations avec l'augmentation de la taille du problème, qui fait en sorte que le solveur d'optimisation se trouve à court de mémoire. Dans ce mémoire, nous nous intéressons aux limites de la reformulation PPG. Nous présentons un cadre de génération de colonnes où les affectations sont générées de manière dynamique pour résoudre les grandes instances du PAPA. Nous proposons un algorithme de génération de colonnes qui peut être facilement adapté pour résoudre toutes les variantes du PAPA en se basant sur différents attributs spatiaux et temporels. Nous avons testé notre méthode sur un modèle d'allocation dans lequel les postes d'amarrage sont considérés discrets, l'arrivée des navires est dynamique et finalement les temps de manutention dépendent des postes d'amarrage où les bateaux vont être amarrés. Les résultats expérimentaux des tests sur un ensemble d'instances artificielles indiquent que la méthode proposée permet de fournir une solution optimale ou proche de l'optimalité même pour des problème de très grandes tailles en seulement quelques minutes.The berth allocation problem (BAP) is one of the key decision problems at port terminals and it has been widely studied. In previous research, the BAP has been formulated as a generalized set partitioning problem (GSPP) and solved using standard solver. The assignments (columns) were generated a priori in a static manner and provided as an input to the optimization model. The GSPP approach is able to solve to optimality relatively large size problems. However, a main drawback of this approach is the explosion in the number of feasible assignments of vessels with increase in problem size which leads in turn to the optimization solver to run out of memory. In this research, we address the limitation of the GSPP approach and present a column generation framework where assignments are generated dynamically to solve large problem instances of the berth allocation problem at port terminals. We propose a column generation based algorithm to address the problem that can be easily adapted to solve any variant of the BAP based on different spatial and temporal attributes. We test and validate the proposed approach on a discrete berth allocation model with dynamic vessel arrivals and berth dependent handling times. Computational experiments on a set of artificial instances indicate that the proposed methodology can solve even very large problem sizes to optimality or near optimality in computational time of only a few minutes

    A rolling horizon approach for the integrated multi-quays berth allocation and crane assignment problem for bulk ports

    Get PDF
    In this paper, an efficient rolling horizon-based heuristic is presented to solve the integrated berth allocation and crane assignment problem in bulk ports. We were guided by a real case study of a multi-terminal port, owned by our Moroccan industrial partner, under several restrictions as high tides and installation’s availability. First, we proposed a mixed integer programming model for the problem. Then, we investigated a strategy to dissipate the congestion within the presented rolling horizon. A variety of experiments were conducted, and the obtained results show that the proposed methods were efficient from a practical point of view

    Discrete-Event Control and Optimization of Container Terminal Operations

    Get PDF
    This thesis discusses the dynamical modeling of complex container terminal operations. In the current literature, the systems are usually modeled in static way using linear programming techniques. This setting does not completely capture the dynamic aspects in the operations, where information about external factors such as ships and trucks arrivals or departures and also the availability of terminal's equipment can always change. We propose dynamical modeling of container terminal operations using discrete-event systems (DES) modeling framework. The basic framework in this thesis is the DES modeling for berth and quay crane allocation problem (BCAP) where the systems are not only dynamic, but also asynchronous. We propose a novel berth and QC allocation method, namely the model predictive allocation (MPA) which is based on model predictive control principle and rolling horizon implementation. The DES models with asynchronous event transition is mathematically analyzed to show the efficacy of our method. We study an optimal input allocation problem for a class of discrete-event systems with dynamic input sequence (DESDIS). We show that in particular, the control input can be obtained by the minimization/maximization of the present input sequence only. We have shown that the proposed approach performed better than the existing method used in the studied terminal and state-of-the-art methods in the literature

    Modelo Matemático para o Planejamento de Atracação de Navios Liners com Possibilidade de Cancelamento de Escala.

    Get PDF
    Os portos brasileiros movimentam mais de 90% das cargas internacionais do país, com destaque para a movimentação de contêineres que vem crescendo ano a ano no Brasil e já representam 10,4% de toda a carga movimentada. Os navios de contêineres são usualmente contratados pela categoria de serviço liners. Os navios liners possuem uma escala fixa de atendimento, previamente divulgada, e caso o navio não seja atracado no porto dentro do intervalo acordado de tempo entre sua chegada até sua atracação, denominado janela de atracação, ocorre uma situação chamada cancelamento de escala e o navio simplesmente não atraca no porto e segue viagem para não comprometer todas as escalas nos outros portos. Portanto, no contexto analisado, é importante disponibilizar aos portos uma ferramenta que minimize o cancelamento de escala, pois tal cancelamento impactará em perdas de receita e contratos para o porto. Para o planejamento da atracação de navios no porto, a literatura cientifica sugere o Problema de Alocação de Berço (PAB). Esta dissertação tem por objetivo propor um modelo matemático baseado no Problema de Roteamento de Veículos (PRV) com Prêmio, Janela de Tempo e Múltiplos Depósitos aplicado ao planejamento da atracação em portos de navios liners com possibilidade de cancelamento de escala visando maximizar a receita obtida pelo atendimento aos navios e também reduzir o tempo de espera para o navio atracar. Instâncias de teste foram desenvolvidas tendo como base as características operacionais do Terminal de Vila Velha (TVV) e o modelo foi executado no CPLEX 12.6. Os resultados mostraram a eficiência do modelo proposto para planejamento da atracação em portos onde pode haver o cancelamento de escala, reduzindo o número de navios não atendidos e maximizando a receita do porto
    corecore