8,888 research outputs found

    An efficient two-parametric family with memory for nonlinear equations

    Full text link
    A new two-parametric family of derivative-free iterative methods for solving nonlinear equations is presented. First, a new biparametric family without memory of optimal order four is proposed. The improvement of the convergence rate of this family is obtained by using two self-accelerating parameters. These varying parameters are calculated in each iterative step employing only information from the current and the previous iteration. The corresponding R-order is 7 and the efficiency index 7(1/3) = 1.913. Numerical examples and comparison with some existing derivative-free optimal eighth-order schemes are included to confirm the theoretical results. In addition, the dynamical behavior of the designed method is analyzed and shows the stability of the scheme.The second author wishes to thank the Islamic Azad University, Hamedan Branch, where the paper was written as a part of the research plan, for financial support.Cordero Barbero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa Sánchez, JR. (2015). An efficient two-parametric family with memory for nonlinear equations. Numerical Algorithms. 68(2):323-335. doi:10.1007/s11075-014-9846-8S323335682Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012)Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms. 63(3), 549–569 (2013)Džunić, J., Petković, M.S.: On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 236, 2909–2920 (2012)Petković, M.S., Neta, B., Petković, L.D., Džunić, J. (ed.).: Multipoint methods for solving nonlinear equations. Elsevier (2013)Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)Soleymani, F., Shateyi, S.: Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal. 2012(318165), 14 (2012). doi: 10.1155/2012/318165Soleymani, F., Sharma, R., Li, X., Tohidi, E.: An optimized derivative-free form of the Potra-Pták methods. Math. Comput. Model. 56, 97–104 (2012)Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011(693787), 12 (2011). doi: 10.5402/2011/693787Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Wang, X., Džunić, J., Zhang, T.: On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl. Math. Comput. 219, 1749–1760 (2012)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Ortega, J.M., Rheinboldt, W.G. (ed.).: Iterative Solutions of Nonlinear Equations in Several Variables, Ed. Academic Press, New York (1970)Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. AMS 11(1), 85–141 (1984)Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. arXiv: 1307.6705 [math.NA

    Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior

    Full text link
    In this paper, we present a family of optimal, in the sense of Kung-Traub's conjecture, iterative methods for solving nonlinear equations with eighth-order convergence. Our methods are based on Chun's fourth-order method. We use the Ostrowski's efficiency index and several numerical tests in order to compare the new methods with other known eighth-order ones. We also extend this comparison to the dynamical study of the different methodsThis research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by the Center of Excellence for Mathematics, University of Shahrekord, Iran.Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2014). Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. Calcolo. 51(1):17-30. https://doi.org/10.1007/s10092-012-0073-11730511Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Am. Math. Soc. 11(1), 85–141 (1984)Chun, C.: Some variants of Kings fourth-order family of methods for nonlinear equations. Appl. Math. Comput. 190, 57–62 (2007)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010)Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s method with optimal eighth order of convergence. Appl. Math. Lett. 24(12), 2082–2086 (2011)Douady, A., Hubbard, J.H.: On the dynamics of polynomials-like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18, 287–343 (1985)Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)Liu, L., Wang, X.: Eighth-order methods with high efficiency index for solving nonlinear equations. Appl. Math. Comput. 215, 3449–3454 (2010)Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966)Sharma, J.R., Sharma, R.: A family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algoritms 54, 445–458 (2010)Soleymani, F., Karimi Banani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012)Thukral, R., Petkovic, M.S.: A family of three-point methods of optimal order for solving nonlinear equations. J. Comput. Appl. Math. 233, 2278–2284 (2010

    On generalization based on Bi et al. Iterative methods with eighth-order convergence for solving nonlinear equations

    Get PDF
    The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.The authors thank the anonymous referees for their valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Islamic Azad University, Hamedan Branch, and Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Lotfi, T.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Abadi, MA.; Zadeh, MM. (2014). On generalization based on Bi et al. Iterative methods with eighth-order convergence for solving nonlinear equations. The Scientific World Journal. 2014. https://doi.org/10.1155/2014/272949S2014Behl, R., Kanwar, V., & Sharma, K. K. (2012). Another Simple Way of Deriving Several Iterative Functions to Solve Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-22. doi:10.1155/2012/294086Fernández-Torres, G., & Vásquez-Aquino, J. (2013). Three New Optimal Fourth-Order Iterative Methods to Solve Nonlinear Equations. Advances in Numerical Analysis, 2013, 1-8. doi:10.1155/2013/957496Kang, S. M., Rafiq, A., & Kwun, Y. C. (2013). A New Second-Order Iteration Method for Solving Nonlinear Equations. Abstract and Applied Analysis, 2013, 1-4. doi:10.1155/2013/487062Soleimani, F., Soleymani, F., & Shateyi, S. (2013). Some Iterative Methods Free from Derivatives and Their Basins of Attraction for Nonlinear Equations. Discrete Dynamics in Nature and Society, 2013, 1-10. doi:10.1155/2013/301718Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Bi, W., Wu, Q., & Ren, H. (2009). A new family of eighth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 214(1), 236-245. doi:10.1016/j.amc.2009.03.077Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). New modifications of Potra–Pták’s method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 234(10), 2969-2976. doi:10.1016/j.cam.2010.04.009Cordero, A., & Torregrosa, J. R. (2011). A class of Steffensen type methods with optimal order of convergence. Applied Mathematics and Computation, 217(19), 7653-7659. doi:10.1016/j.amc.2011.02.067Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055Heydari, M., Hosseini, S. M., & Loghmani, G. B. (2011). On two new families of iterative methods for solving nonlinear equations with optimal order. Applicable Analysis and Discrete Mathematics, 5(1), 93-109. doi:10.2298/aadm110228012hGeum, Y. H., & Kim, Y. I. (2010). A multi-parameter family of three-step eighth-order iterative methods locating a simple root. Applied Mathematics and Computation, 215(9), 3375-3382. doi:10.1016/j.amc.2009.10.030Geum, Y. H., & Kim, Y. I. (2011). A uniparametric family of three-step eighth-order multipoint iterative methods for simple roots. Applied Mathematics Letters, 24(6), 929-935. doi:10.1016/j.aml.2011.01.002Geum, Y. H., & Kim, Y. I. (2011). A biparametric family of eighth-order methods with their third-step weighting function decomposed into a one-variable linear fraction and a two-variable generic function. Computers & Mathematics with Applications, 61(3), 708-714. doi:10.1016/j.camwa.2010.12.020Kou, J., Wang, X., & Li, Y. (2010). Some eighth-order root-finding three-step methods. Communications in Nonlinear Science and Numerical Simulation, 15(3), 536-544. doi:10.1016/j.cnsns.2009.04.013Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Wang, X., & Liu, L. (2010). New eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 234(5), 1611-1620. doi:10.1016/j.cam.2010.03.002Wang, X., & Liu, L. (2010). Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Applied Mathematics Letters, 23(5), 549-554. doi:10.1016/j.aml.2010.01.009Sharma, J. R., & Sharma, R. (2009). A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numerical Algorithms, 54(4), 445-458. doi:10.1007/s11075-009-9345-5Soleymani, F. (2011). Novel Computational Iterative Methods with Optimal Order for Nonlinear Equations. Advances in Numerical Analysis, 2011, 1-10. doi:10.1155/2011/270903Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9Soleymani, F., Karimi Vanani, S., & Afghani, A. (2011). A General Three-Step Class of Optimal Iterations for Nonlinear Equations. Mathematical Problems in Engineering, 2011, 1-10. doi:10.1155/2011/469512Soleymani, F., Vanani, S. K., Khan, M., & Sharifi, M. (2012). Some modifications of King’s family with optimal eighth order of convergence. Mathematical and Computer Modelling, 55(3-4), 1373-1380. doi:10.1016/j.mcm.2011.10.016Soleymani, F., Karimi Vanani, S., & Jamali Paghaleh, M. (2012). A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/568740Thukral, R. (2010). A new eighth-order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 217(1), 222-229. doi:10.1016/j.amc.2010.05.048Thukral, R. (2011). Eighth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations. ISRN Applied Mathematics, 2011, 1-12. doi:10.5402/2011/693787Thukral, R. (2012). New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations. International Journal of Mathematics and Mathematical Sciences, 2012, 1-12. doi:10.1155/2012/493456Thukral, R., & Petković, M. S. (2010). A family of three-point methods of optimal order for solving nonlinear equations. Journal of Computational and Applied Mathematics, 233(9), 2278-2284. doi:10.1016/j.cam.2009.10.012Wang, J. (2013). He’s Max-Min Approach for Coupled Cubic Nonlinear Equations Arising in Packaging System. Mathematical Problems in Engineering, 2013, 1-4. doi:10.1155/2013/382509Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Montazeri, H., Soleymani, F., Shateyi, S., & Motsa, S. S. (2012). On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-15. doi:10.1155/2012/751975Soleymani, F. (2012). A Rapid Numerical Algorithm to Compute Matrix Inversion. International Journal of Mathematics and Mathematical Sciences, 2012, 1-11. doi:10.1155/2012/134653Soleymani, F. (2013). A new method for solving ill-conditioned linear systems. Opuscula Mathematica, 33(2), 337. doi:10.7494/opmath.2013.33.2.337Thukral, R. (2012). Further Development of Jarratt Method for Solving Nonlinear Equations. Advances in Numerical Analysis, 2012, 1-9. doi:10.1155/2012/493707Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants

    Get PDF
    [EN] We present new high-order optimal iterativemethods for solving a nonlinear equation, f(x) = 0, by using Pade-like approximants. We compose optimal methods of order 4 with Newton's step and substitute the derivative by using an appropriate rational approximant, getting optimal methods of order 8. In the same way, increasing the degree of the approximant, we obtain optimal methods of order 16. We also perform different numerical tests that confirm the theoretical results.This work has been supported by Ministerio de Ciencia e Innovacion de Espana MTM2014-52016-C2-02-P and Generalitat Valenciana PROMETEO/2016/089.Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2017). Multistep High-Order Methods for Nonlinear Equations Using Pade-Like Approximants. Discrete Dynamics in Nature and Society. 1-6. https://doi.org/10.1155/2017/3204652S16Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Sharma, J. R., & Sharma, R. (2009). A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numerical Algorithms, 54(4), 445-458. doi:10.1007/s11075-009-9345-5Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). New modifications of Potra–Pták’s method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 234(10), 2969-2976. doi:10.1016/j.cam.2010.04.009Wang, X., & Liu, L. (2010). New eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 234(5), 1611-1620. doi:10.1016/j.cam.2010.03.002Neta, B., & Petković, M. S. (2010). Construction of optimal order nonlinear solvers using inverse interpolation. Applied Mathematics and Computation, 217(6), 2448-2455. doi:10.1016/j.amc.2010.07.045Fidkowski, K. J., Oliver, T. A., Lu, J., & Darmofal, D. L. (2005). p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics, 207(1), 92-113. doi:10.1016/j.jcp.2005.01.005Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-yKing, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    A family of iterative methods with accelerated eighth-order convergence

    Full text link
    We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results.The authors would like to thank the referee for the valuable comments and for the suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-06-2010-2285.Cordero Barbero, A.; Fardi, M.; Ghasemi, M.; Torregrosa Sánchez, JR. (2012). A family of iterative methods with accelerated eighth-order convergence. Journal of Applied Mathematics. 2012. https://doi.org/10.1155/2012/2825612012Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8Homeier, H. H. H. (2005). On Newton-type methods with cubic convergence. Journal of Computational and Applied Mathematics, 176(2), 425-432. doi:10.1016/j.cam.2004.07.027Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Chun, C. (2007). Some variants of King’s fourth-order family of methods for nonlinear equations. Applied Mathematics and Computation, 190(1), 57-62. doi:10.1016/j.amc.2007.01.006Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Maheshwari, A. K. (2009). A fourth order iterative method for solving nonlinear equations. Applied Mathematics and Computation, 211(2), 383-391. doi:10.1016/j.amc.2009.01.047Neta, B. (1981). On a family of multipoint methods for non-linear equations. International Journal of Computer Mathematics, 9(4), 353-361. doi:10.1080/00207168108803257Bi, W., Ren, H., & Wu, Q. (2009). Three-step iterative methods with eighth-order convergence for solving nonlinear equations. Journal of Computational and Applied Mathematics, 225(1), 105-112. doi:10.1016/j.cam.2008.07.004Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 235(10), 3189-3194. doi:10.1016/j.cam.2011.01.004Liu, L., & Wang, X. (2010). Eighth-order methods with high efficiency index for solving nonlinear equations. Applied Mathematics and Computation, 215(9), 3449-3454. doi:10.1016/j.amc.2009.10.040Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems

    Get PDF
    [EN] For solving nonlinear systems of big size, such as those obtained by applying finite differences for approximating the solution of diffusion problem and heat conduction equations, three-step iterative methods with eighth-order local convergence are presented. The computational efficiency of the new methods is compared with those of some known ones, obtaining good conclusions, due to the particular structure of the iterative expression of the proposed methods. Numerical comparisons are made with the same existing methods, on standard nonlinear systems and a nonlinear one-dimensional heat conduction equation by transforming it in a nonlinear system by using finite differences. From these numerical examples, we confirm the theoretical results and show the performance of the presented schemes.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and by Generalitat Valenciana PROMETEO/2016/089.Cordero Barbero, A.; Gómez, E.; Torregrosa Sánchez, JR. (2017). Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems. Complexity. 1-11. https://doi.org/10.1155/2017/6457532S11

    Optimal high-order methods for solving nonlinear equations

    Full text link
    A class of optimal iterative methods for solving nonlinear equations is extended up to sixteenth-order of convergence. We design them by using the weight function technique, with functions of three variables. Some numerical tests are made in order to confirm the theoretical results and to compare the new methods with other known ones.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT 2011-1-B1-33 Republica Dominicana.Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2014). Optimal high-order methods for solving nonlinear equations. Journal of Applied Mathematics. 2014. https://doi.org/10.1155/2014/5916382014Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Artidiello, S., Chicharro, F., Cordero, A., & Torregrosa, J. R. (2013). Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 90(10), 2049-2060. doi:10.1080/00207160.2012.748900Chun, C., Lee, M. Y., Neta, B., & Džunić, J. (2012). On optimal fourth-order iterative methods free from second derivative and their dynamics. Applied Mathematics and Computation, 218(11), 6427-6438. doi:10.1016/j.amc.2011.12.013Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597Khan, Y., Fardi, M., & Sayevand, K. (2012). A new general eighth-order family of iterative methods for solving nonlinear equations. Applied Mathematics Letters, 25(12), 2262-2266. doi:10.1016/j.aml.2012.06.014Džunić, J., & Petković, M. S. (2012). A Family of Three-Point Methods of Ostrowski’s Type for Solving Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-9. doi:10.1155/2012/425867Soleymani, F., Sharifi, M., & Somayeh Mousavi, B. (2011). An Improvement of Ostrowski’s and King’s Techniques with Optimal Convergence Order Eight. Journal of Optimization Theory and Applications, 153(1), 225-236. doi:10.1007/s10957-011-9929-9Thukral, R. (2012). New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations. American Journal of Computational and Applied Mathematics, 2(3), 112-118. doi:10.5923/j.ajcam.20120203.08Sharma, J. R., Guha, R. K., & Gupta, P. (2013). Improved King’s methods with optimal order of convergence based on rational approximations. Applied Mathematics Letters, 26(4), 473-480. doi:10.1016/j.aml.2012.11.011Chun, C. (2008). Some fourth-order iterative methods for solving nonlinear equations. Applied Mathematics and Computation, 195(2), 454-459. doi:10.1016/j.amc.2007.04.105King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Džunić, J., Petković, M. S., & Petković, L. D. (2011). A family of optimal three-point methods for solving nonlinear equations using two parametric functions. Applied Mathematics and Computation, 217(19), 7612-7619. doi:10.1016/j.amc.2011.02.055Weerakoon, S., & Fernando, T. G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13(8), 87-93. doi:10.1016/s0893-9659(00)00100-2Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    On improved three-step schemes with high efficiency index and their dynamics

    Full text link
    This paper presents an improvement of the sixth-order method of Chun and Neta as a class of three-step iterations with optimal efficiency index, in the sense of Kung-Traub conjecture. Each member of the presented class reaches the highest possible order using four functional evaluations. Error analysis will be studied and numerical examples are also made to support the theoretical results. We then present results which describe the dynamics of the presented optimal methods for complex polynomials. The basins of attraction of the existing optimal methods and our methods are presented and compared to illustrate their performances.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT Republica Dominicana.Babajee, DKR.; Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR. (2014). On improved three-step schemes with high efficiency index and their dynamics. Numerical Algorithms. 65(1):153-169. https://doi.org/10.1007/s11075-013-9699-6S153169651Pang, J.S., Chan, D.: Iterative methods for variational and complementary problems. Math. Program. 24(1), 284–313 (1982)Sun, D.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91(1), 123–140 (1996)Chun, C., Neta, B.: A new sixth-order scheme for nonlinear equations. Appl. Math. Lett. 25, 185–189 (2012)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Neta, B.: A new family of high-order methods for solving equations. Int. J. Comput. Math. 14, 191–195 (1983)Neta, B.: On Popovski’s method for nonlinear equations. Appl. Math. Comput. 201, 710–715 (2008)Chun, C., Neta, B.: Some modifications of Newton’s method by the method of undeterminate coefficients. Comput. Math. Appl. 56, 2528–2538 (2008)Chun, C., Lee, M.Y., Neta, B., Dzunic, J.: On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Three-step iterative methods with optimal eighth-order convergence. J. Comput. Appl. Math. 235, 3189–3194 (2011)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: A family of modified Ostrowski’s methods with optimal eighth order of convergence. Appl. Math. Lett. 24, 2082–2086 (2011)Heydari, M., Hosseini, S.M., Loghmani, G.B.: On two new families of iterative methods for solving nonlinear equations with optimal order. Appl. Anal. Dis. Math. 5, 93–109 (2011)Neta, B., Petkovic, M.S.: Construction of optimal order nonlinear solvers using inverse interpolation. Appl. Math. Comput. 217, 2448–2445 (2010)Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)Soleymani, F., Karimi Vanani, S., Khan, M., Sharifi, M.: Some modifications of King’s family with optimal eighth order of convergence. Math. Comput. Model. 55, 1373–1380 (2012)Soleymani, F., Karimi Vanani, S., Jamali Paghaleh, M.: A class of three-step derivative-free root solvers with optimal convergence order. J. Appl. Math. 2012, Article ID 568740, 15 pp. (2012). doi: 10.1155/2012/568740Soleymani, F., Sharifi, M., Mousavi, B.S.: An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 153, 225–236 (2012)Stewart, B.D.: Attractor basins of various root-finding methods. M.S. Thesis, Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA (2001)Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Scientia 10, 3–35 (2004)Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69, 212–223 (2005)Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton type method. J. Math. Anal. Appl. 366, 24–32 (2010)Neta, B., Chun, C., Scott, M.: A note on the modified super-Halley method. Appl. Math. Comput. 218, 9575–9577 (2012)Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)Ardelean, G.: A comparison between iterative methods by using the basins of attraction. Appl. Math. Comput. 218, 88–95 (2011)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Babajee, D.K.R.: Analysis of higher order variants of Newton’s method and their applications to differential and integral equations and in ocean acidification. Ph.D. Thesis, University of Mauritius (2010

    Three-step iterative methods with optimal eighth-order convergence

    Full text link
    In this paper, based on Ostrowski's method, a new family of eighth-order methods for solving nonlinear equations is derived. In terms of computational cost, each iteration of these methods requires three evaluations of the function and one evaluation of its first derivative, so that their efficiency indices are 1.682, which is optimal according to Kung and Traub's conjecture. Numerical comparisons are made to show the performance of the new family. © 2011 Elsevier B.V. All rights reserved.This research was supported by Ministerio de Ciencia y Tecnologia MTM2010-18539.Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2011). Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics. 235(10):3189-3194. https://doi.org/10.1016/j.cam.2011.01.004S318931942351
    • …
    corecore