772 research outputs found

    Toward designing a quantum key distribution network simulation model

    Get PDF
    As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    SUPERMAN: Security using pre-existing routing for mobile ad hoc networks

    Get PDF
    The flexibility and mobility of Mobile Ad hoc Networks (MANETs) have made them increasing popular in a wide range of use cases. To protect these networks, security protocols have been developed to protect routing and application data. However, these protocols only protect routes or communication, not both. Both secure routing and communication security protocols must be implemented to provide full protection. The use of communication security protocols originally developed for wireline and WiFi networks can also place a heavy burden on the limited network resources of a MANET. To address these issues, a novel secure framework (SUPERMAN) is proposed. The framework is designed to allow existing network and routing protocols to perform their functions, whilst providing node authentication, access control, and communication security mechanisms. This paper presents a novel security framework for MANETs, SUPERMAN. Simulation results comparing SUPERMAN with IPsec, SAODV and SOLSR are provided to demonstrate the proposed frameworks suitability for wireless communication securit

    LS-AODV: A ROUTING PROTOCOL BASED ON LIGHTWEIGHT CRYPTOGRAPHIC TECHNIQUES FOR A FANET OF NANO DRONES

    Get PDF
    With the battlespace rapidly shifting to the cyber domain, it is vital to have secure, robust routing protocols for unmanned systems. Furthermore, the development of nano drones is gaining traction, providing new covert capabilities for operators at sea or on land. Deploying a flying ad hoc network (FANET) of nano drones on the battlefield comes with specific performance and security issues. This thesis provides a novel approach to address the performance and security concerns faced by FANET routing protocols, and, in our case, is specifically tailored to improve the Ad Hoc On-Demand Distance Vector (AODV) routing protocol. The proposed routing protocol, Lightweight Secure Ad Hoc On-Demand Distance Vector (LS-AODV), uses a lightweight stream cipher, Trivium, to encrypt routing control packets, providing confidentiality. The scheme also uses Chaskey-12-based message authentication codes (MACs) to guarantee the authenticity and integrity of control packets. We use a network simulator, NS-3, to compare LS-AODV against two benchmark routing protocols, AODV and the Optimized Link State Routing (OLSR) protocol, in order to gauge network performance and security benefits. The simulation results indicate that when the FANET is not under attack from black-hole nodes, LS-AODV generally outperforms OLSR but performs slightly worse than AODV. On the other hand, LS-AODV emerges as the protocol of choice when a FANET is subject to a black-hole attack.ONROutstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Security Verification of Secure MANET Routing Protocols

    Get PDF
    Secure mobile ad hoc network (MANET) routing protocols are not tested thoroughly against their security properties. Previous research focuses on verifying secure, reactive, accumulation-based routing protocols. An improved methodology and framework for secure MANET routing protocol verification is proposed which includes table-based and proactive protocols. The model checker, SPIN, is selected as the core of the secure MANET verification framework. Security is defined by both accuracy and availability: a protocol forms accurate routes and these routes are always accurate. The framework enables exhaustive verification of protocols and results in a counter-example if the protocol is deemed insecure. The framework is applied to models of the Optimized Link-State Routing (OLSR) and Secure OLSR protocol against five attack vectors. These vectors are based on known attacks against each protocol. Vulnerabilities consistent with published findings are automatically revealed. No unknown attacks were found; however, future attack vectors may lead to new attacks. The new framework for verifying secure MANET protocols extends verification capabilities to table-based and proactive protocols

    An enhanced Multipath Strategy in Mobile Ad hoc Routing Protocols

    Full text link
    The various routing protocols in Mobile Ad hoc Networks follow different strategies to send the information from one node to another. The nodes in the network are non static and they move randomly and are prone to link failure which makes always to find new routes to the destination. This research mainly focused on the study of the characteristics of multipath routing protocols in MANETS. Two of the multipath routing protocols were investigated and a comparative study along with simulation using NS2 was done between DSR and AODV to propose an enhanced approach to reach the destination maintaining the QoS. A possible optimization to the DSR and AODV routing protocols was proposed to make no node to be overburdened by distributing the load after finding the alternate multipath routes which were discovered in the Route discovery process. The simulation shows that the differences in the protocol highlighted major differences with the protocol performance. These differences have been analyzed with various network size, mobility, and network load. A new search table named Search of Next Node Enquiry Table (SONNET) was proposed to find the best neighbor node. Using SONNET the node selects the neighbor which can be reached in less number of hops and with less time delay and maintaining the QoS
    corecore