218 research outputs found

    Wavelets and Imaging Informatics: A Review of the Literature

    Get PDF
    AbstractModern medicine is a field that has been revolutionized by the emergence of computer and imaging technology. It is increasingly difficult, however, to manage the ever-growing enormous amount of medical imaging information available in digital formats. Numerous techniques have been developed to make the imaging information more easily accessible and to perform analysis automatically. Among these techniques, wavelet transforms have proven prominently useful not only for biomedical imaging but also for signal and image processing in general. Wavelet transforms decompose a signal into frequency bands, the width of which are determined by a dyadic scheme. This particular way of dividing frequency bands matches the statistical properties of most images very well. During the past decade, there has been active research in applying wavelets to various aspects of imaging informatics, including compression, enhancements, analysis, classification, and retrieval. This review represents a survey of the most significant practical and theoretical advances in the field of wavelet-based imaging informatics

    Medical Image Denoising Using Mixed Transforms

    Get PDF
    يقترح في هذا البحث طريقة تعتمد على خليط من التحويلات Wavelet Transform(WT) و Multiwavelet Transform (MWT) من اجل تقليل التشوه في الصور الطبية . تعتمد الطريقة المقترحة على استخدام WT  و MWT بالتعاقب لتعزيز اداء ازالة التشوه من الصور الطبية. عمليا , يتم في البداية اضافة تشويه لصور الرنين المغناطيسي (MRI) والتصوير المقطعي المحوسب (CT)  من اجل الاختبار. ثم تعالج الصورة المشوهة بواسطة WT  لتنتج اربع تقسيمات للصورة موزعة على اساس التردد ويعالج كل تقسيم بواسطة MWT  قبل مرحلة ازالة التشوه المكثفة او البسيطة. اوضحت النتائج العملية ان نسبة الاشارة الى الضوضاء (PSNR) تحسنت بشكل ملحوظ وتم المحافظة على المعلومات الاساسية للصورة. بالاضافة الى ذلك, فان متوسط نسبة الخطا انخفض تبعا لذلك بالمقارنة مع الطرق الاخرى. In this paper,  a mixed transform method is proposed based on a combination of wavelet transform (WT) and multiwavelet transform (MWT) in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI) or Computed Tomography (CT) images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR) is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE) is decreased accordingly compared to other available methods

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    Review and classification of variability analysis techniques with clinical applications

    Get PDF
    Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis
    corecore