10 research outputs found

    ASCP-IoMT: AI-Enabled Lightweight Secure Communication Protocol for Internet of Medical Things

    Get PDF
    The Internet of Medical Things (IoMT) is a unification of smart healthcare devices, tools, and software, which connect various patients and other users to the healthcare information system through the networking technology. It further reduces unnecessary hospital visits and the burden on healthcare systems by connecting the patients to their healthcare experts (i.e., doctors) and allows secure transmission of healthcare data over an insecure channel (e.g., the Internet). Since Artificial Intelligence (AI) has a great impact on the performance and usability of an information system, it is important to include its modules in a healthcare information system, which will be very helpful for the prediction of some phenomena, such as chances of getting a heart attack and possibility of a tumor, from the collected and analysed healthcare data. To mitigate these issues, in this paper, a new AI-enabled lightweight, secure communication scheme for an IoMT environment has been designed and named as ASCP-IoMT, in short. The security analysis of ASCP-IoMT is performed in different ways, such as an informal way and a formal way (through the random oracle model). ASCP-IoMT performs better than other similar schemes and provides superior security with extra functionality features as compared those for the existing state of art solutions. A practical implementation of ASCP-IoMT is also performed in order to measure its impact on various network performance parameters. The end to end delay values of ASCP-IoMT are 0.01587, 0.07440 and 0.17097 seconds and the throughput values of ASCP-IoMT are 5.05, 10.88 and 16.41 bits per second (bps) under the different considered cases, respectively. For AI-based Big data analytics phase, the values of computation time (seconds) for decision tree, support vector machine (SVM), and logistic regression are measured as 0.19, 0.23, and 0.27, respectively. Moreover, the different values of accuracy for decision tree, SVM and logistic regression are 84.24%, 87.57%, and 85.20%, respectively. From these values, it is clear that decision tree method requires less time than the other considered techniques, whereas accuracy is high in case of SVM

    Lightweight mutual authentication and privacy preservation schemes for IOT systems.

    Get PDF
    Internet of Things (IoT) presents a holistic and transformative approach for providing services in different domains. IoT creates an atmosphere of interaction between humans and the surrounding physical world through various technologies such as sensors, actuators, and the cloud. Theoretically, when everything is connected, everything is at risk. The rapid growth of IoT with the heterogeneous devices that are connected to the Internet generates new challenges in protecting and preserving user’s privacy and ensuring the security of our lives. IoT systems face considerable challenges in deploying robust authentication protocols because some of the IoT devices are resource-constrained with limited computation and storage capabilities to implement the currently available authentication mechanism that employs computationally expensive functions. The limited capabilities of IoT devices raise significant security and privacy concerns, such as ensuring personal information confidentiality and integrity and establishing end-to-end authentication and secret key generation between the communicating device to guarantee secure communication among the communicating devices. The ubiquity nature of the IoT device provides adversaries more attack surfaces which can lead to tragic consequences that can negatively impact our everyday connected lives. According to [1], authentication and privacy protection are essential security requirements. Therefore, there is a critical need to address these rising security and privacy concerns to ensure IoT systems\u27 safety. This dissertation identifies gaps in the literature and presents new mutual authentication and privacy preservation schemes that fit the needs of resource-constrained devices to improve IoT security and privacy against common attacks. This research enhances IoT security and privacy by introducing lightweight mutual authentication and privacy preservation schemes for IoT based on hardware biometrics using PUF, Chained hash PUF, dynamic identities, and user’s static and continuous biometrics. The communicating parties can anonymously communicate and mutually authenticate each other and locally establish a session key using dynamic identities to ensure the user’s unlinkability and untraceability. Furthermore, virtual domain segregation is implemented to apply security policies between nodes. The chained-hash PUF mechanism technique is implemented as a way to verify the sender’s identity. At first, this dissertation presents a framework called “A Lightweight Mutual Authentication and Privacy-Preservation framework for IoT Systems” and this framework is considered the foundation of all presented schemes. The proposed framework integrates software and hardware-based security approaches that satisfy the NIST IoT security requirements for data protection and device identification. Also, this dissertation presents an architecture called “PUF Hierarchal Distributed Architecture” (PHDA), which is used to perform the device name resolution. Based on the proposed framework and PUF architecture, three lightweight privacy-preserving and mutual authentication schemes are presented. The Three different schemes are introduced to accommodate both stationary and mobile IoT devices as well as local and distributed nodes. The first scheme is designed for the smart homes domain, where the IoT devices are stationary, and the controller node is local. In this scheme, there is direct communication between the IoT nodes and the controller node. Establishing mutual authentication does not require the cloud service\u27s involvement to reduce the system latency and offload the cloud traffic. The second scheme is designed for the industrial IoT domain and used smart poultry farms as a use case of the Industrial IoT (IIoT) domain. In the second scheme, the IoT devices are stationary, and the controller nodes are hierarchical and distributed, supported by machine-to-machine (M2M) communication. The third scheme is designed for smart cities and used IoV fleet vehicles as a use case of the smart cities domain. During the roaming service, the mutual authentication process between a vehicle and the distributed controller nodes represented by the Roadside Units (RSUs) is completed through the cloud service that stores all vehicle\u27s security credentials. After that, when a vehicle moves to the proximity of a new RSU under the same administrative authority of the most recently visited RSU, the two RSUs can cooperate to verify the vehicle\u27s legitimacy. Also, the third scheme supports driver static and continuous authentication as a driver monitoring system for the sake of both road and driver safety. The security of the proposed schemes is evaluated and simulated using two different methods: security analysis and performance analysis. The security analysis is implemented through formal security analysis and informal security analysis. The formal analysis uses the Burrows–Abadi–Needham logic (BAN) and model-checking using the automated validation of Internet security protocols and applications (AVISPA) toolkit. The informal security analysis is completed by: (1) investigating the robustness of the proposed schemes against the well-known security attacks and analyze its satisfaction with the main security properties; and (2) comparing the proposed schemes with the other existing authentication schemes considering their resistance to the well-known attacks and their satisfaction with the main security requirements. Both the formal and informal security analyses complement each other. The performance evaluation is conducted by analyzing and comparing the overhead and efficiency of the proposed schemes with other related schemes from the literature. The results showed that the proposed schemes achieve all security goals and, simultaneously, efficiently and satisfy the needs of the resource-constrained IoT devices

    State-of-the-Art Sensors Technology in Spain 2015: Volume 1

    Get PDF
    This book provides a comprehensive overview of state-of-the-art sensors technology in specific leading areas. Industrial researchers, engineers and professionals can find information on the most advanced technologies and developments, together with data processing. Further research covers specific devices and technologies that capture and distribute data to be processed by applying dedicated techniques or procedures, which is where sensors play the most important role. The book provides insights and solutions for different problems covering a broad spectrum of possibilities, thanks to a set of applications and solutions based on sensory technologies. Topics include: • Signal analysis for spectral power • 3D precise measurements • Electromagnetic propagation • Drugs detection • e-health environments based on social sensor networks • Robots in wireless environments, navigation, teleoperation, object grasping, demining • Wireless sensor networks • Industrial IoT • Insights in smart cities • Voice recognition • FPGA interfaces • Flight mill device for measurements on insects • Optical systems: UV, LEDs, lasers, fiber optics • Machine vision • Power dissipation • Liquid level in fuel tanks • Parabolic solar tracker • Force sensors • Control for a twin roto

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Human Computer Interaction and Emerging Technologies

    Get PDF
    The INTERACT Conferences are an important platform for researchers and practitioners in the field of human-computer interaction (HCI) to showcase their work. They are organised biennially by the International Federation for Information Processing (IFIP) Technical Committee on Human–Computer Interaction (IFIP TC13), an international committee of 30 member national societies and nine Working Groups. INTERACT is truly international in its spirit and has attracted researchers from several countries and cultures. With an emphasis on inclusiveness, it works to lower the barriers that prevent people in developing countries from participating in conferences. As a multidisciplinary field, HCI requires interaction and discussion among diverse people with different interests and backgrounds. The 17th IFIP TC13 International Conference on Human-Computer Interaction (INTERACT 2019) took place during 2-6 September 2019 in Paphos, Cyprus. The conference was held at the Coral Beach Hotel Resort, and was co-sponsored by the Cyprus University of Technology and Tallinn University, in cooperation with ACM and ACM SIGCHI. This volume contains the Adjunct Proceedings to the 17th INTERACT Conference, comprising a series of selected papers from workshops, the Student Design Consortium and the Doctoral Consortium. The volume follows the INTERACT conference tradition of submitting adjunct papers after the main publication deadline, to be published by a University Press with a connection to the conference itself. In this case, both the Adjunct Proceedings Chair of the conference, Dr Usashi Chatterjee, and the lead Editor of this volume, Dr Fernando Loizides, work at Cardiff University which is the home of Cardiff University Press

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019
    corecore