1,000 research outputs found

    Knowledge transfer from the innovative university. A model of information management in the digital context: the PIEDD case study

    Get PDF
    Para seguir cumpliendo con la imperiosa necesidad de generar y transferir conocimiento e innovación, las universidades deben cumplir con las crecientes demandas de una sociedad que está experimentando un imparable proceso de migración digital mundial. En este sentido, desde su creación en 2009 hasta la actualidad, la Plataforma para la Innovación y Experimentación en Diversidad Digital (PIEDD) ​​de la Universidad de Santiago de Compostela ha desarrollado proyectos de I + D en el entorno de la innovación tecnológica y la formación profesional en el contexto del diseño, generación y gestión de todo tipo de contenido digital, lo que avala una experiencia precursora de colaboración entre casi un centenar de prestigiosos investigadores que trabajan en los campos disciplinarios heterogéneos y concomitantes como la informática, NTIC, física aplicada, matemáticas, periodismo y comunicación audiovisual y publicidad.To continue fulfilling the imperative need to generate and transfer knowledge and innovation, universities must meet the growing demands of a society that is undergoing an unstoppable process of global digital migration. In this sense, since its creation in 2009 to the present, the Platform for Innovation and Experimentation in Digital Diversity (PIEDD)of the University of Santiago de Compostelahas carried out R&D projects in technology innovation and vocational training in the context of design, generation and management of all kinds of digital content, which constitutes a pioneering experience of collaboration between almost one hundred prestigious researchers working from as heterogeneous and concomitant disciplinary fields as computer sciences, ICT, applied physics, mathematics, journalism and audio-visual communication and advertising.Este trabajo se centra en la experiencia PIEDD, que comenzó su andadura al socaire del proyecto "Capacitación Tecnológica de los Futuros Profesionales de la Industria de Contenidos Digitales", referencia 2009/PC2016, financiado por el Ministerio de Industria y Comercio, Red.es y el Plan AvanzaS

    Understanding human-machine networks: A cross-disciplinary survey

    Get PDF
    © 2017 ACM. In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of sociotechnical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    Get PDF
    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities

    Get PDF
    A shared agreed-upon definition of "smart city" (SC) is not available and there is no "best formula" to follow in transforming each and every city into SC. In a broader inclusive definition, it can be described as an opportunistic concept that enhances harmony between the lives and the environment around those lives perpetually in a city by harnessing the smart technology enabling a comfortable and convenient living ecosystem paving the way towards smarter countries and the smarter planet. SCs are being implemented to combine governors, organisations, institutions, citizens, environment, and emerging technologies in a highly synergistic synchronised ecosystem in order to increase the quality of life (QoL) and enable a more sustainable future for urban life with increasing natural resource constraints. In this study, we analyse how to develop citizen- and resource-centric smarter cities based on the recent SC development initiatives with the successful use cases, future SC development plans, and many other particular SC development solutions. The main features of SC are presented in a framework fuelled by recent technological advancement, particular city requirements and dynamics. This framework - TCitySmartF 1) aims to aspire a platform that seamlessly forges engineering and technology solutions with social dynamics in a new philosophical city automation concept - socio-technical transitions, 2) incorporates many smart evolving components, best practices, and contemporary solutions into a coherent synergistic SC topology, 3) unfolds current and future opportunities in order to adopt smarter, safer and more sustainable urban environments, and 4) demonstrates a variety of insights and orchestrational directions for local governors and private sector about how to transform cities into smarter cities from the technological, social, economic and environmental point of view, particularly by both putting residents and urban dynamics at the forefront of the development with participatory planning and interaction for the robust community- and citizen-tailored services. The framework developed in this paper is aimed to be incorporated into the real-world SC development projects in Lancashire, UK

    Augmented Reality and Its Application

    Get PDF
    Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more

    Transformation to advanced mechatronics systems within new industrial revolution: A novel framework in Automation of Everything (AoE)

    Get PDF
    The recent advances in cyber-physical domains, cloud, cloudlet and edge platforms along with the evolving Artificial Intelligence (AI) techniques, big data analytics and cutting-edge wireless communication technologies within the Industry 4.0 (4IR) are urging mechatronics designers, practitioners and educators to further review the ways in which mechatronics systems are perceived, designed, manufactured and advanced. Within this scope, we introduce the service-oriented cyber-physical advanced mechatronics systems (AMSs) along with current and future challenges. The objective in AMSs is to create remarkable intelligent autonomous products by 1) forging effective sensing, self-learning, Wisdom as a Service (WaaS), Information as a Service (InaaS), precise decision making and actuation using effective location-independent monitoring, control and management techniques with products, and 2) maintaining a competitive edge through better product performances via immediate and continuous learning, while the products are being used by customers and are being produced in factories within the cycle of Automation of Everything (AoE). With the advanced wireless communication techniques and improved battery technologies, AMSs are capable of getting independent and working with other massive AMSs to construct robust, customisable, energy-efficient, autonomous, intelligent and immersive platforms. In this regard, rather than providing technological details, this paper implements philosophical insights into 1) how mechatronics systems are being transformed into AMSs, 2) how robust AMSs can be developed by both exploiting the wisdom created within cyber-physical smart domains in the edge and cloud platforms, and incorporating all the stakeholders with diverse objectives into all phases of the product life-cycle, and 3) what essential common features AMSs should acquire to increase the efficacy of products and prolong their product life. Against this background, an AMS development framework is proposed in order to contextualize all the necessary phases of AMS development and direct all stakeholders to rivet high quality products and services within AoE

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G
    corecore