1,158 research outputs found

    05291 Abstracts Collection -- Sublinear Algorithms

    Get PDF
    From 17.07.05 to 22.07.05, the Dagstuhl Seminar 05291 ``Sublinear Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Erasure-Resilient Sublinear-Time Graph Algorithms

    Get PDF
    We investigate sublinear-time algorithms that take partially erased graphs represented by adjacency lists as input. Our algorithms make degree and neighbor queries to the input graph and work with a specified fraction of adversarial erasures in adjacency entries. We focus on two computational tasks: testing if a graph is connected or ?-far from connected and estimating the average degree. For testing connectedness, we discover a threshold phenomenon: when the fraction of erasures is less than ?, this property can be tested efficiently (in time independent of the size of the graph); when the fraction of erasures is at least ?, then a number of queries linear in the size of the graph representation is required. Our erasure-resilient algorithm (for the special case with no erasures) is an improvement over the previously known algorithm for connectedness in the standard property testing model and has optimal dependence on the proximity parameter ?. For estimating the average degree, our results provide an "interpolation" between the query complexity for this computational task in the model with no erasures in two different settings: with only degree queries, investigated by Feige (SIAM J. Comput. `06), and with degree queries and neighbor queries, investigated by Goldreich and Ron (Random Struct. Algorithms `08) and Eden et al. (ICALP `17). We conclude with a discussion of our model and open questions raised by our work

    On the Power of Conditional Samples in Distribution Testing

    Full text link
    In this paper we define and examine the power of the {\em conditional-sampling} oracle in the context of distribution-property testing. The conditional-sampling oracle for a discrete distribution μ\mu takes as input a subset S⊂[n]S \subset [n] of the domain, and outputs a random sample i∈Si \in S drawn according to μ\mu, conditioned on SS (and independently of all prior samples). The conditional-sampling oracle is a natural generalization of the ordinary sampling oracle in which SS always equals [n][n]. We show that with the conditional-sampling oracle, testing uniformity, testing identity to a known distribution, and testing any label-invariant property of distributions is easier than with the ordinary sampling oracle. On the other hand, we also show that for some distribution properties the sample-complexity remains near-maximal even with conditional sampling
    • …
    corecore