86,284 research outputs found

    Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena

    Get PDF
    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place

    Constraint-consistent Runge-Kutta methods for one-dimensional incompressible multiphase flow

    Get PDF
    New time integration methods are proposed for simulating incompressible multiphase flow in pipelines described by the one-dimensional two-fluid model. The methodology is based on 'half-explicit' Runge-Kutta methods, being explicit for the mass and momentum equations and implicit for the volume constraint. These half-explicit methods are constraint-consistent, i.e., they satisfy the hidden constraints of the two-fluid model, namely the volumetric flow (incompressibility) constraint and the Poisson equation for the pressure. A novel analysis shows that these hidden constraints are present in the continuous, semi-discrete, and fully discrete equations. Next to constraint-consistency, the new methods are conservative: the original mass and momentum equations are solved, and the proper shock conditions are satisfied; efficient: the implicit constraint is rewritten into a pressure Poisson equation, and the time step for the explicit part is restricted by a CFL condition based on the convective wave speeds; and accurate: achieving high order temporal accuracy for all solution components (masses, velocities, and pressure). High-order accuracy is obtained by constructing a new third order Runge-Kutta method that satisfies the additional order conditions arising from the presence of the constraint in combination with time-dependent boundary conditions. Two test cases (Kelvin-Helmholtz instabilities in a pipeline and liquid sloshing in a cylindrical tank) show that for time-independent boundary conditions the half-explicit formulation with a classic fourth-order Runge-Kutta method accurately integrates the two-fluid model equations in time while preserving all constraints. A third test case (ramp-up of gas production in a multiphase pipeline) shows that our new third order method is preferred for cases featuring time-dependent boundary conditions

    Optimizing radiation therapy treatments by exploring tumour ecosystem dynamics in-silico

    Get PDF
    In this contribution, we propose a system-level compartmental population dynamics model of tumour cells that interact with the patient (innate) immune system under the impact of radiation therapy (RT). The resulting in silico - model enables us to analyse the system-level impact of radiation on the tumour ecosystem. The Tumour Control Probability (TCP) was calculated for varying conditions concerning therapy fractionation schemes, radio-sensitivity of tumour sub-clones, tumour population doubling time, repair speed and immunological elimination parameters. The simulations exhibit a therapeutic benefit when applying the initial 3 fractions in an interval of 2 days instead of daily delivered fractions. This effect disappears for fast-growing tumours and in the case of incomplete repair. The results suggest some optimisation potential for combined hyperthermia-radiotherapy. Regarding the sensitivity of the proposed model, cellular repair of radiation-induced damages is a key factor for tumour control. In contrast to this, the radio-sensitivity of immune cells does not influence the TCP as long as the radio-sensitivity is higher than those for tumour cells. The influence of the tumour sub-clone structure is small (if no competition is included). This work demonstrates the usefulness of in silico – modelling for identifying optimisation potentials

    On the parallel solution of parabolic equations

    Get PDF
    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented

    Modeling Multicomponent Fuel Droplet Vaporization with Finite Liquid Diffusivity Using Coupled Algebraic-Dqmom with Delumping

    Get PDF
    Multicomponent fuel droplet vaporization models for use in combustion CFD codes often prioritize computational efficiency over model complexity. This leads to oversimplifying assumptions such as single component droplets or infinite liquid diffusivity. The previously developed Direct Quadrature Method of Moments (DQMoM) with delumping model demonstrated a computationally efficient and accurate approach to solve for every discrete species in a well-mixed vaporizing multicomponent droplet. To expand the method to less restrictive cases, a new solution technique is presented called the Coupled Algebraic-Direct Quadrature Method of Moments (CA-DQMoM). In contrast to previous moment methods for droplet vaporization, CA-DQMoM solves for the evolution of two liquid distributions by coupling a monovariate, homogeneous DQMoM approach with additional algebraic moment equations, allowing for a more complex droplet vaporization model with finite rates of liquid diffusion to be solved with computational efficiency. To further decrease computational expense, an approximation that employs the same nodes for both distributions can be used in certain cases. Finally, a delumping technique is adapted to the finite diffusivity model to reconstruct discrete species information at minimal computational cost. The model is proven to be accurate relative to a full discrete component model for both a kerosene droplet comprised of 36 species and a multicomponent droplet of 200 species while maintaining the computational efficiency of continuous thermodynamics models. The combined accuracy and computational efficiency demonstrated by the CA-DQMoM with delumping model for a multicomponent fuel droplet with finite liquid diffusivity makes it ideal for incorporation into CFD models for complex combustion process

    In-medium loop corrections and longitudinally polarized gauge bosons in high-energy showers

    Full text link
    The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. We continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-emission approximations. In this particular paper, we show (i) how the "instantaneous" interactions of Light-Cone Perturbation Theory must be included in the calculation to account for effects of longitudinally-polarized gauge bosons in intermediate states, and (ii) how to compute virtual corrections to LPM emission rates, which will be necessary in order to make infrared-safe calculations of the characteristics of in-medium QCD showering of high-energy partons. In order to develop these topics in as simple a context as possible, we will focus in the current paper not on QCD but on large-NfN_f QED, where NfN_f is the number of electron flavors.Comment: 43 pages + appendices for 89 pages total; 43 figures. Difference from v2: Overall sign of eqs. (F30,F33,F39,F42) fixed; correction to eq. (H14); final results of paper are unchange

    Modelling of simultaneous mass and heat transfer with chemical reaction using the Maxwell-Stefan theory I. Model development and isothermal study

    Get PDF
    A general applicable model has been developed which can predict mass and heat transfer fluxes through a vapour/gas-liquid interface in case a reversible chemical reaction with associated heat effect takes place in the liquid phase. In this model the Maxwell-Stefan theory has been used to describe the transport of mass and heat. The description of the transfer rates has been based on the film model in which a well-mixed bulk and a stagnant zone are thought to exist. In this paper results obtained from the Maxwell-Stefan theory have been compared with the results obtained from the classical theory due to Fick. This has been done for isothermal absorption of a pure gas A in a solvent containing a reactive component B. Component A is allowed to react by a unimolecular chemical reaction or by a bimolecular chemical reaction with B to produce component C. Since the Maxwell-Stefan theory leads to implicit expressions for the absorption rates, approximate explicit expressions have been derived. In case of absorption with chemical reaction it turned out that the mass transfer rate could be formulated as the product of the mass flux for physical absorption and an enhancement factor. This enhancement factor possesses the same functional dependency in case Fick's law is used to describe the mass transfer process. The model which has been developed in this work is quite general and can be used for a rather general class of gas-liquid and vapour-liquid transfer processes. In this paper (Part I) only isothermal simulations will be reported to show the important features of the model for describing mass transfer with chemical reaction. In many processes such as distillation, reactive distillation and some absorption processes, heat effects may play an important additional role. In Part II non-isothermal processes will be studied to investigate the influence of heat effects on mass transfer rates

    Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of -omics findings

    Get PDF
    Characterization of disease-associated proteins improves our understanding of disease pathophysiology. Obtaining a comprehensive coverage of the proteome is challenging, mainly due to limited statistical power and an inability to verify hundreds of putative biomarkers. In an effort to address these issues, we investigated the value of parallel analysis of compartment-specific proteomes with an assessment of findings by cross-strategy and cross-omics (proteomics-transcriptomics) agreement. The validity of the individual datasets and of a “verified” dataset based on crossstrategy/omics agreement was defined following their comparison with published literature. The proteomic analysis of the cell extract, Endoplasmic Reticulum/Golgi apparatus and conditioned medium of T24 vs. its metastatic subclone T24M bladder cancer cells allowed the identification of 253, 217 and 256 significant changes, respectively. Integration of these findings with transcriptomics resulted in 253 “verified” proteins based on the agreement of at least 2 strategies. This approach revealed findings of higher validity, as supported by a higher level of agreement in the literature data than those of individual datasets. As an example, the coverage and shortlisting of targets in the IL-8 signalling pathway are discussed. Collectively, an integrative analysis appears a safer way to evaluate -omics datasets and ultimately generate models from valid observations
    • …
    corecore