7,255 research outputs found

    Delay-dependent exponential stability of neutral stochastic delay systems (vol 54, pg 147, 2009)

    Get PDF
    In the above titled paper originally published in vol. 54, no. 1, pp. 147-152) of IEEE Transactions on Automatic Control, there were some typographical errors in inequalities. Corrections are presented here

    Delay-dependent exponential stability of neutral stochastic delay systems

    Get PDF
    This paper studies stability of neutral stochastic delay systems by linear matrix inequality (LMI) approach. Delay dependent criterion for exponential stability is presented and numerical examples are conducted to verify the effectiveness of the proposed method

    Exponential stability of a class of boundary control systems

    Get PDF
    We study a class of partial differential equations (with variable coefficients) on a one dimensional spatial domain with control and observation at the boundary. For this class of systems we provide simple tools to check exponential stability. This class is general enough to include models of flexible structures, traveling waves, heat exchangers, and bioreactors among others. The result is based on the use of a generating function (the energy for physical systems) and an inequality condition at the boundary. Furthermore, based on the port Hamiltonian approach, we give a constructive method to reduce this inequality to a simple matrix inequality

    Multi-condition of stability for nonlinear stochastic non-autonomous delay differential equation

    Get PDF
    A nonlinear stochastic differential equation with the order of nonlinearity higher than one, with several discrete and distributed delays and time varying coefficients is considered. It is shown that the sufficient conditions for exponential mean square stability of the linear part of the considered nonlinear equation also are sufficient conditions for stability in probability of the initial nonlinear equation. Some new sufficient condition of stability in probability for the zero solution of the considered nonlinear non-autonomous stochastic differential equation is obtained which can be considered as a multi-condition of stability because it allows to get for one considered equation at once several different complementary of each other sufficient stability conditions. The obtained results are illustrated with numerical simulations and figures.Comment: Published at https://doi.org/10.15559/18-VMSTA110 in the Modern Stochastics: Theory and Applications (https://www.i-journals.org/vtxpp/VMSTA) by VTeX (http://www.vtex.lt/

    Generalised theory on asymptotic stability and boundedness of stochastic functional differential equations

    Get PDF
    Asymptotic stability and boundedness have been two of most popular topics in the study of stochastic functional differential equations (SFDEs) (see e.g. Appleby and Reynolds (2008), Appleby and Rodkina (2009), Basin and Rodkina (2008), Khasminskii (1980), Mao (1995), Mao (1997), Mao (2007), Rodkina and Basin (2007), Shu, Lam, and Xu (2009), Yang, Gao, Lam, and Shi (2009), Yuan and Lygeros (2005) and Yuan and Lygeros (2006)). In general, the existing results on asymptotic stability and boundedness of SFDEs require (i) the coefficients of the SFDEs obey the local Lipschitz condition and the linear growth condition; (ii) the diffusion operator of the SFDEs acting on a C2,1-function be bounded by a polynomial with the same order as the C2,1-function. However, there are many SFDEs which do not obey the linear growth condition. Moreover, for such highly nonlinear SFDEs, the diffusion operator acting on a C2,1-function is generally bounded by a polynomial with a higher order than the C2,1-function. Hence the existing criteria on stability and boundedness for SFDEs are not applicable andwesee the necessity to develop new criteria. Our main aim in this paper is to establish new criteria where the linear growth condition is no longer needed while the up-bound for the diffusion operator may take a much more general form

    On input-to-state stability of stochastic retarded systems with Markovian switching

    Get PDF
    This note develops a Razumikhin-type theorem on pth moment input-to-state stability of hybrid stochastic retarded systems (also known as stochastic retarded systems with Markovian switching), which is an improvement of an existing result. An application to hybrid stochastic delay systems verifies the effectiveness of the improved result
    corecore